
Advanced Docker and Kubernetes Course for Intermediate Students 

Course Overview: 

This	course	aims	to	elevate	the	skills	of	professionals	in	Docker	and	Kubernetes,	providing	in-depth	
knowledge	and	practical	experience	with	advanced	containerization	techniques,	Kubernetes	cluster	
management,	application	deployment,	and	security.	It	combines	theoretical	instruction	with	extensive	
hands-on	exercises,	real-world	scenarios,	and	best	practices	to	prepare	students	for	advanced	roles	in	
cloud-native	development	and	operations.	

Module 1: Advanced Docker Techniques 
• DockerBile	optimizations	for	smaller,	more	secure	images	

• Multi-stage	builds	and	minimizing	image	vulnerabilities	

• Docker	networking	deep	dive:	Bridge,	Host,	Overlay	networks	

• Managing	Docker	volumes	and	persistent	data	strategies	

Module 2: Kubernetes Architecture Deep Dive 
• Understanding	Kubernetes	internals:	etcd,	API	server,	scheduler,	controller	manager	

• Advanced	pod	scheduling:	Node/Pod	afBinity	and	anti-afBinity,	Taints	and	Tolerations	

• Kubernetes	security:	Pod	Security	Policies,	Network	Policies,	Role-Based	Access	Control	(RBAC)	

Module 3: Stateful ApplicaDons in Kubernetes 
• Managing	stateful	sets	and	understanding	their	lifecycle	and	update	strategies	

• Dynamic	volume	provisioning	with	Persistent	Volume	Claims	(PVCs)	and	Storage	Classes	

• Backup	and	disaster	recovery	strategies	for	stateful	applications	

Module 4: Kubernetes Networking 
• Implementing	Ingress	resources	for	HTTP	routing	

• Network	policies	for	securing	pod	communication	within	and	across	clusters	

Module 5: CI/CD with Kubernetes 
• Automating	deployment	pipelines	using	Jenkins,	GitLab	CI,	or	GitHub	Actions	with	Kubernetes	
integration	

• Canary	deployments	and	blue-green	deployments	in	Kubernetes	

• Rollbacks	and	versioned	deployments	with	Helm	charts	

Th
eO
psK
art



Module 6: Monitoring, Logging, and Observability 
• Implementing	monitoring	with	Prometheus	and	Grafana	

• Centralized	logging	with	Elasticsearch,	Fluentd,	and	Kibana	(EFK	stack)	

• Application	tracing	with	Jaeger	or	Zipkin	in	Kubernetes	environments	

Module 7: Kubernetes Security Best PracDces 
• Securing	cluster	components	and	communication	

• Implementing	secrets	management	with	Kubernetes	Secrets	and	HashiCorp	Vault	

• Vulnerability	scanning	for	container	images	and	Kubernetes	manifests	

Module 8: Performance Tuning and OpDmizaDon 
• Resource	requests	and	limits	for	optimal	scheduling	and	resource	utilization	

• Horizontal	Pod	Autoscaler	(HPA)	and	Vertical	Pod	Autoscaler	(VPA)	for	dynamic	scaling	

• Analyzing	and	optimizing	application	performance	in	Kubernetes	environments	

===============================================================================	

Hands-on Projects

Project	1:	Multi-Container	Application	Deployment	

Project	Overview:		

This	project	is	designed	to	give	students	a	comprehensive,	hands-on	experience	in	deploying	a	multi-
container	application	using	Docker	and	Kubernetes,	focusing	on	utilizing	advanced	containerization	
techniques,	Kubernetes	networking,	and	persistent	storage	solutions.	The	goal	is	to	simulate	a	real-
world	scenario	where	students	manage	the	lifecycle	of	a	complex	application,	ensuring	its	resilience,	
scalability,	and	security.	

Objective:	

Deploy	a	scalable	multi-container	application	on	Kubernetes,	implementing	advanced	Docker	
techniques	for	image	optimization	and	Kubernetes	resources	for	effective	networking	and	data	
persistence.	

Task	1:	Application	and	Docker	ConBiguration	

Objective:	Prepare	a	multi-component	application	for	deployment,	optimizing	Docker	conBigurations	
for	production.	

Activities:	

Th
eO
psK
art



• Containerize	Application	Components:	Write	DockerBiles	for	each	component	of	the	application,	such	
as	a	front-end	web	interface,	a	back-end	API,	and	a	worker	process.	Employ	multi-stage	builds	to	
reduce	image	sizes.	

• Optimize	Images:	Apply	best	practices	to	minimize	the	size	and	increase	the	security	of	the	Docker	
images.	Use	tools	like	Docker's	buildx	for	building	multi-platform	images	and	scanners	like	Trivy	for	
identifying	vulnerabilities.	

• Container	Registry:	Push	the	optimized	Docker	images	to	a	container	registry	like	Docker	Hub,	
Google	Container	Registry	(GCR),	or	Amazon	Elastic	Container	Registry	(ECR).	

	

Task	2:	Kubernetes	Deployment	and	Networking	

Objective:	Deploy	the	application	on	Kubernetes,	conBiguring	networking	to	enable	component	
interaction	and	external	access.	

Activities:	

• Kubernetes	Manifests:	Create	Kubernetes	manifests	for	each	application	component,	deBining	
Deployments,	Services,	and	Ingress	resources	as	needed.	Use	ConBigMaps	and	Secrets	to	manage	
conBiguration	and	sensitive	data.	

• Ingress	Controller:	Set	up	an	Ingress	controller	to	manage	external	access	to	the	application.	
ConBigure	Ingress	rules	to	route	trafBic	to	the	appropriate	services	based	on	the	request	path	or	host.	

• Service	Discovery:	Implement	internal	service	discovery	mechanisms	to	enable	communication	
between	application	components.	Utilize	Kubernetes	DNS	for	service	resolution.	

Task	3:	Implementing	Persistent	Storage	

Objective:		Ensure	data	persistence	for	stateful	components	of	the	application	using	Kubernetes	
Persistent	Volumes	(PVs)	and	Persistent	Volume	Claims	(PVCs).	

Activities:		

• Persistent	Volume	Claims:	Create	PVCs	for	stateful	application	components	that	require	persistent	
storage,	such	as	databases	or	Bile	storage.	

• Storage	Classes:	Utilize	dynamic	volume	provisioning	by	deBining	Storage	Classes	tailored	to	different	
data	storage	needs	(e.g.,	SSD-based	storage	for	high	performance).	

• StatefulSets:	For	database	components,	consider	using	StatefulSets	to	manage	the	deployment	and	
scaling	of	a	set	of	Pods,	ensuring	orderly	deployment,	scaling,	and	termination.	

Task	4:	Autoscaling	and	Resource	Management	

Objective:		Implement	auto-scaling	for	the	application	to	handle	variable	load,	ensuring	efBicient	
resource	utilization.	

Activities:		

• Horizontal	Pod	Autoscaler	(HPA):	ConBigure	HPA	for	the	application	components	to	automatically	
scale	the	number	of	pods	based	on	CPU	utilization	or	custom	metrics.	

Th
eO
psK
art



• Resource	Requests	and	Limits:	DeBine	resource	requests	and	limits	in	the	application's	deployment	
conBigurations	to	ensure	that	pods	are	scheduled	on	nodes	with	adequate	resources	and	to	prevent	
any	single	pod	from	monopolizing	node	resources.	

• Cluster	Autoscaler:	If	supported	by	the	Kubernetes	cluster	environment,	conBigure	the	Cluster	
Autoscaler	to	adjust	the	number	of	nodes	in	the	cluster	based	on	the	demands	of	the	deployed	
workloads.	

	

Task	5:	Monitoring,	Logging,	and	Observability	

Objective:		Integrate	monitoring,	logging,	and	observability	tools	to	maintain	insight	into	application	
performance	and	health.	

Activities:		

• Monitoring	Setup:	Deploy	a	monitoring	solution	like	Prometheus	to	collect	metrics	from	the	
application	and	Kubernetes	cluster.	Use	Grafana	to	create	dashboards	visualizing	application	
performance.	

• Logging:	Implement	a	centralized	logging	solution	using	the	EFK	(Elasticsearch,	Fluentd,	Kibana)	
stack	to	aggregate	and	visualize	logs	from	all	application	components.	

• Distributed	Tracing:	Integrate	a	distributed	tracing	system	such	as	Jaeger	or	Zipkin	to	trace	requests	
across	the	microservices	architecture,	identifying	bottlenecks	and	latency	issues.	

Deliverables:	

- DockerBiles	and	Docker	Compose	(if	used	for	local	testing)	conBigurations	for	each	application	
component.	

- Kubernetes	manifests	for	deploying	the	application,	including	networking	and	storage	
conBigurations.	

- Documentation	detailing	the	deployment	process,	conBigurations	used,	and	reasoning	behind	design	
decisions.	

- Monitoring,	logging,	and	tracing	conBigurations,	along	with	dashboards	and	visualizations	created	
for	observing	application	performance.	

===============================================================================	

Project	2:	Implementing	a	CI/CD	Pipeline	for	Cloud-Native	Applications	

Project	Overview	:	

As	a	business	owner	of	a	growing	e-commerce	platform,	you	recognize	the	need	to	accelerate	feature	
releases	while	ensuring	application	reliability	and	security.	Your	application	is	hosted	on	Kubernetes,	
and	you've	decided	to	enhance	your	deployment	process	with	an	automated	CI/CD	pipeline.	This	
pipeline	must	integrate	security	scanning	to	mitigate	vulnerabilities	and	implement	canary	
deployment	strategies	to	gradually	roll	out	changes,	minimizing	the	risk	to	your	production	
environment.	

Th
eO
psK
art



Objective:	

Design	and	implement	a	CI/CD	pipeline	for	your	Kubernetes-hosted	e-commerce	application,	
incorporating	automated	security	scans	and	canary	deployment	strategies	to	ensure	fast,	reliable,	and	
secure	delivery	of	software	updates.	

Task	1:	CI/CD	Pipeline	Design	and	Tool	Selection	

Objective:	Outline	the	CI/CD	pipeline	architecture	and	select	the	appropriate	tools	for	implementation.	

Activities:	

• Determine	the	stages	of	the	pipeline,	including	code	integration,	automated	testing,	security	
scanning,	building,	deploying,	and	post-deployment	monitoring.	

• Choose	CI/CD	tools	(e.g.,	Jenkins,	GitLab	CI/CD,	GitHub	Actions,	CircleCI)	and	security	scanning	tools	
(e.g.,	SonarQube,	Clair,	Snyk)	that	best	Bit	the	project's	needs.	

Task	2:	Source	Code	Management	and	Integration	

Objective:	Set	up	source	code	management	practices	and	conBigure	the	CI/CD	pipeline	for	automated	
integration.	

Activities:	

• Implement	a	Git	branching	model	(e.g.,	GitFlow	or	GitHub	Flow)	to	manage	the	development	lifecycle	
efBiciently.	

• ConBigure	the	CI	tool	to	automatically	trigger	builds	on	code	commits	to	the	main	repository,	
ensuring	that	every	change	is	built	and	tested.	

Task	3:	Automated	Testing	and	Security	Scanning	

Objective:		Integrate	automated	testing	and	security	scanning	into	the	pipeline	to	identify	issues	early	
in	the	development	cycle.	

Activities:		

• Develop	unit	and	integration	tests	for	the	application	components.	Integrate	these	tests	into	the	CI	
pipeline	to	run	automatically	on	each	build.	

• ConBigure	the	security	scanning	tool	to	scan	the	codebase	and	dependencies	for	vulnerabilities.	Fail	
the	build	if	critical	vulnerabilities	are	found,	requiring	them	to	be	addressed	before	proceeding.	

Task	4:	Building	Docker	Images	and	Deploying	to	Kubernetes	

Objective:		Automate	the	process	of	building	Docker	images	and	deploying	them	to	a	Kubernetes	
environment.	

Activities:		

• Write	DockerBiles	for	the	application	components	and	conBigure	the	CI	pipeline	to	build	Docker	
images	on	successful	code	integration	and	testing.	

Th
eO
psK
art



• Use	Kubernetes	manifests	or	Helm	charts	to	deBine	the	application	deployment.	ConBigure	the	CI/CD	
pipeline	to	update	the	Kubernetes	environment	with	the	new	images,	using	a	canary	deployment	
strategy.	

Task	5:	Implementing	Canary	Deployments	

Objective:		Gradually	roll	out	new	features	to	a	subset	of	users	to	ensure	stability	before	full	
deployment.	

Activities:		

• DeBine	canary	deployment	rules,	such	as	routing	a	certain	percentage	of	trafBic	to	the	new	version	of	
the	application.	

• Monitor	key	performance	indicators	(KPIs)	and	user	feedback	for	the	canary	release.	If	issues	arise,	
roll	back	to	the	previous	version.	Otherwise,	gradually	increase	trafBic	to	the	new	version	until	it	
serves	all	users.	

Task	6:	Monitoring	and	Feedback	Loop	

Objective:		Set	up	monitoring	for	the	deployed	application	and	establish	a	feedback	loop	for	continuous	
improvement.	

Activities:		

• Integrate	monitoring	tools	(e.g.,	Prometheus,	Grafana)	to	track	application	performance	and	user	
experience	metrics	in	real-time.	

• Use	insights	from	monitoring	and	user	feedback	to	guide	further	development	priorities	and	pipeline	
improvements.	

Deliverables:	

- A	detailed	CI/CD	pipeline	conBiguration,	including	integration	with	source	control,	automated	
testing,	security	scanning,	and	deployment	scripts.	

- Documentation	outlining	the	pipeline	design,	tool	choices,	testing	and	security	strategies,	and	
canary	deployment	process.	

- Monitoring	setup	and	dashboards	for	real-time	application	performance	tracking.	

- A	rollback	plan	for	handling	deployment	issues	or	critical	vulnerabilities	detected	in	production.	

===============================================================================	

Th
eO
psK
art



Project	3:	Stateful	Application	Management	in	Kubernetes	

Project	Overview	:	

Imagine	you	are	the	lead	engineer	for	a	software	development	team	responsible	for	deploying	and	
managing	a	blog	platform	that	relies	on	a	database	to	store	posts	and	user	comments.	This	platform	is	
designed	to	be	cloud-native	and	needs	to	be	highly	available	and	resilient	to	data	loss.	Your	task	is	to	
deploy	this	stateful	application	on	Kubernetes,	ensuring	that	the	database	retains	data	across	pod	
restarts	and	deployments	and	implementing	a	robust	backup	and	recovery	strategy.	

Objective:	

Deploy	a	blog	platform	as	a	stateful	application	on	Kubernetes	using	StatefulSets	and	
PersistentVolumeClaims	(PVCs)	to	manage	the	database	component.	Additionally,	demonstrate	a	
backup	and	recovery	process	to	ensure	data	durability	and	resilience.	

Task	1:	Preparing	the	Application	and	Environment	

Objective:	Prepare	the	blog	platform's	components	for	deployment,	focusing	on	the	stateful	database	
component.	

Activities:	

• Containerize	the	blog	platform's	services,	including	the	web	frontend	and	the	database	backend,	
ensuring	the	database	is	conBigured	to	store	data	on	a	persistent	volume.	

• Create	a	Kubernetes	cluster	or	use	an	existing	one	where	the	application	will	be	deployed.	

Task	2:	Deploying	with	StatefulSets	and	PVCs	

Objective:	Utilize	StatefulSets	and	PVCs	for	deploying	the	database	to	ensure	persistent	storage.	

Activities:	

• Create	a	StatefulSet	for	the	database	backend,	ensuring	that	each	pod	has	a	stable	hostname	and	that	
pods	are	created	sequentially.	

• DeBine	PVCs	to	request	persistent	storage	from	Kubernetes,	which	will	be	mounted	into	the	database	
pods,	ensuring	data	is	retained	across	pod	restarts.	

Task	3:	Implementing	a	Backup	and	Recovery	Strategy	

Objective:		Establish	a	process	for	backing	up	the	database	and	recovering	it	in	case	of	data	loss.	

Activities:		

• Choose	a	backup	tool	or	method	suitable	for	the	database	technology	being	used	(e.g.,	mysqldump	
for	MySQL,	pg_dump	for	PostgreSQL).	

• Create	a	Kubernetes	cron	job	that	periodically	executes	the	backup	process,	storing	backup	Biles	in	a	
secure	and	accessible	location	(e.g.,	cloud	object	storage).	

Th
eO
psK
art



• Document	the	procedure	for	restoring	the	database	from	a	backup,	including	any	necessary	
Kubernetes	or	database	commands.	

Task	4:		Scaling	and	Managing	the	Stateful	Application	

Objective:		ConBigure	the	application	for	scalability	and	high	availability.	

Activities:		

• Implement	horizontal	scaling	for	the	stateless	components	of	the	blog	platform	(e.g.,	web	frontend)	
using	Deployments	and	Horizontal	Pod	Autoscaler	(HPA).	

• Explore	options	for	scaling	the	stateful	component	(database)	if	supported	by	the	database	
technology,	such	as	read	replicas.	

• Test	the	application's	resilience	by	simulating	failures	and	practicing	the	recovery	process.	

Task	5:	Monitoring	and	Observability	

Objective:		Set	up	monitoring	for	the	stateful	application	to	ensure	its	health	and	performance.	

Activities:		

• Integrate	monitoring	tools	like	Prometheus	and	Grafana	with	the	Kubernetes	cluster	to	collect	and	
visualize	metrics	from	the	blog	platform.	

• Create	alerts	for	critical	conditions,	such	as	high	CPU/memory	usage	on	database	pods,	slow	query	
response	times,	or	failure	to	perform	backups.	

Deliverables:	

- DockerBiles	for	the	blog	platform's	services	and	Kubernetes	YAML	manifests	for	deploying	the	
application,	including	StatefulSets	and	PVCs.	

- Scripts	or	instructions	for	performing	database	backups	and	recovery.	

- Documentation	detailing	the	deployment	process,	backup/recovery	procedures,	scaling	strategies,	
and	monitoring	setup.	

- A	report	on	the	application's	resilience	testing,	including	observed	failures,	recovery	steps,	and	
lessons	learned.	

===============================================================================	

Project	4:	Monitoring	and	Logging	Setup	for	Kubernetes	Applications	

Project	Overview	:	

As	the	lead	architect	for	a	software	development	team	tasked	with	maintaining	a	high-trafBic	online	
education	platform,	you're	responsible	for	ensuring	the	system's	reliability	and	performance.	The	
platform	is	hosted	on	Kubernetes,	and	you've	noticed	that	visibility	into	the	application's	health	and	

Th
eO
psK
art



performance	could	be	improved.	To	address	this,	you've	decided	to	implement	a	comprehensive	
monitoring	and	logging	solution	that	provides	real-time	insights	into	both	application	behavior	and	
infrastructure	health,	enabling	proactive	issue	resolution	and	system	optimization.	

Objective:	

Design	and	implement	a	robust	monitoring	and	logging	framework	for	a	Kubernetes-hosted	online	
education	platform,	utilizing	open-source	tools	to	create	custom	dashboards	and	conBigure	alerts	for	
key	application	and	infrastructure	metrics.	

Task	1:	Tool	Selection	and	Setup	

Objective:	Choose	and	set	up	monitoring	and	logging	tools	suited	for	a	Kubernetes	environment.	

Activities:	

• Select	monitoring	tools	(e.g.,	Prometheus	for	metric	collection	and	Grafana	for	visualization)	and	a	
logging	stack	(e.g.,	Elasticsearch,	Fluentd,	and	Kibana,	also	known	as	the	EFK	stack)	that	best	Bit	the	
needs	of	the	Kubernetes	environment.	

• Deploy	the	chosen	tools	on	Kubernetes,	ensuring	they	are	conBigured	to	collect	data	from	all	relevant	
sources,	including	pod	metrics,	node	health,	and	application	logs.	

Task	2:	ConBiguring	Log	Collection	and	Management	

Objective:	Aggregate	logs	from	across	the	Kubernetes	cluster	to	facilitate	centralized	viewing	and	
analysis.	

Activities:	

• ConBigure	Fluentd	as	a	log	collector	within	the	cluster,	collecting	logs	from	all	pods	and	forwarding	
them	to	Elasticsearch	for	storage	and	indexing.	

• Set	up	Elasticsearch	indices	and	retention	policies	to	manage	log	storage	efBiciently,	ensuring	logs	are	
accessible	for	a	deBined	period	before	being	archived	or	deleted.	

Task	3:	Implementing	Application	and	Infrastructure	Monitoring	

Objective:		Set	up	Prometheus	to	scrape	metrics	from	the	Kubernetes	cluster	and	application	
endpoints.	

Activities:		

• Deploy	Prometheus	with	appropriate	conBigurations	to	discover	and	scrape	metrics	from	Kubernetes	
nodes,	pods,	and	custom	application	metrics	endpoints.	

• DeBine	alerting	rules	in	Prometheus	for	critical	conditions	that	require	immediate	attention,	such	as	
high	memory	usage,	error	rates,	or	pod	failures.	

Th
eO
psK
art



Task	4:		Dashboard	Creation	and	Alert	ConBiguration	

Objective:		Create	Grafana	dashboards	for	visualizing	key	metrics	and	conBigure	alerts	for	proactive	
issue	detection.	

Activities:		

• Design	and	create	Grafana	dashboards	that	provide	insights	into	application	performance,	user	
activity,	and	system	health.	Dashboards	should	include	metrics	such	as	request	latencies,	error	rates,	
system	load,	and	pod	resource	utilization.	

• ConBigure	Grafana	or	Prometheus	alerts	to	notify	the	development	team	via	email	or	a	messaging	
platform	(e.g.,	Slack)	when	key	metrics	exceed	threshold	values,	indicating	potential	issues.	

Task	5:	Backup,	Recovery,	and	Documentation	

Objective:		Establish	processes	for	backing	up	monitoring	data	and	document	the	monitoring	and	
logging	setup.	

Activities:		

• Implement	a	backup	strategy	for	Prometheus	metric	data	and	Elasticsearch	indices	to	ensure	
monitoring	data	can	be	recovered	in	case	of	data	loss.	

• Document	the	monitoring	and	logging	architecture,	including	tool	conBigurations,	data	Blow	
diagrams,	dashboard	guides,	and	alerting	policies.	

• Create	a	recovery	guide	detailing	steps	to	restore	monitoring	and	logging	data	from	backups	in	case	
of	failure.	

Deliverables:	

- ConBiguration	Biles	and	deployment	manifests	for	monitoring	and	logging	tools	on	Kubernetes.	

- A	collection	of	Grafana	dashboards	providing	comprehensive	visibility	into	application	and	
infrastructure	metrics.	

- Documentation	covering	the	setup	and	conBiguration	of	the	monitoring	and	logging	stack,	dashboard	
utilization,	alert	management,	and	backup/recovery	procedures.	

- =============================================================================	

Project	5:	Network	Policy	and	Security	Hardening	in	Kubernetes	

Project	Overview	:	

As	a	Security	Architect	at	a	Binancial	services	company,	you're	tasked	with	enhancing	the	security	
posture	of	your	company's	Kubernetes-based	payment	processing	application.	Given	the	sensitive	
nature	of	Binancial	transactions,	it's	crucial	to	ensure	that	the	application	is	not	only	resilient	against	
external	threats	but	also	protected	from	potential	internal	vulnerabilities.	Your	objective	is	to	

Th
eO
psK
art



implement	network	policies	to	regulate	pod-to-pod	communication	within	the	Kubernetes	cluster	and	
harden	the	cluster's	security	by	employing	Role-Based	Access	Control	(RBAC)	and	Pod	Security	
Policies	(PSP).	

Objective:	

Strengthen	the	security	framework	of	a	Kubernetes	cluster	hosting	a	critical	payment	processing	
application	by	conBiguring	network	policies	for	secure	pod	communication	and	applying	RBAC	and	PSP	
for	cluster	security	hardening.	

	

Task	1:	Assessment	and	Planning	

Objective:	Assess	the	current	cluster	conBiguration	and	plan	the	implementation	of	security	measures.	

Activities:	

• Review	the	architecture	of	the	payment	processing	application	to	understand	the	communication	
Blow	between	microservices.	

• Identify	sensitive	components	of	the	application	that	require	restricted	access	or	special	security	
considerations.	

Task	2:	Implementing	Network	Policies	

Objective:	DeBine	and	apply	Kubernetes	network	policies	to	control	the	Blow	of	trafBic	between	pods	
within	the	cluster.	

Activities:	

• Create	network	policies	that	allow	only	necessary	inter-service	communications	while	blocking	
unwanted	trafBic	between	pods.	

• Apply	the	network	policies	to	the	appropriate	namespaces	or	pods,	ensuring	that	the	payment	
processing	application's	components	can	communicate	as	required	but	are	isolated	from	other	non-
essential	services.	

Task	3:	Role-Based	Access	Control	(RBAC)	ConBiguration	

Objective:		Set	up	RBAC	to	enforce	least	privilege	access	control	for	cluster	resources.	

Activities:		

• DeBine	roles	with	permissions	tailored	to	the	responsibilities	of	different	users	and	services	
interacting	with	the	Kubernetes	cluster	(e.g.,	developers,	CI/CD	tools,	application	services).	

• Create	role	bindings	to	assign	these	roles	to	speciBic	users,	groups,	and	service	accounts,	ensuring	
that	each	entity	has	only	the	permissions	necessary	to	perform	its	tasks.	

Th
eO
psK
art



Task	4:		Pod	Security	Policies	(PSP)	Implementation	

Objective:		Deploy	PSP	to	restrict	the	actions	that	pods	can	perform	and	prevent	the	execution	of	
privileged	operations.	

Activities:		

• DeBine	PSPs	that	enforce	security	best	practices,	such	as	disallowing	privileged	containers,	
restricting	host	Bilesystem	access,	and	limiting	the	use	of	volume	types.	

• Apply	the	PSPs	to	the	cluster,	associating	them	with	the	appropriate	service	accounts	or	user	groups	
to	ensure	that	the	payment	processing	application	runs	securely	without	hindering	functionality.	

Task	5:	Testing	and	Validation	

Objective:		Ensure	that	the	implemented	security	measures	function	as	intended	without	disrupting	
the	application's	operations.	

Activities:		

• Conduct	tests	to	verify	that	network	policies	effectively	isolate	pod	communications	according	to	the	
deBined	rules.	

• Test	RBAC	conBigurations	by	attempting	to	perform	actions	as	different	users	and	service	accounts,	
verifying	that	access	controls	are	correctly	enforced.	

• Validate	that	PSPs	are	applied	and	that	pods	are	restricted	according	to	the	policies,	attempting	to	
deploy	non-compliant	pods	to	conBirm	they	are	blocked.	

Task	6:	Documentation	and	Knowledge	Sharing	

Objective:		Document	the	security	conBigurations	and	share	knowledge	with	the	team.	

Activities:		

• Create	comprehensive	documentation	of	the	network	policies,	RBAC	roles	and	role	bindings,	and	PSP	
conBigurations,	including	the	rationale	behind	each	security	measure.	

• Prepare	a	presentation	or	workshop	for	the	development	and	operations	teams	to	explain	the	
implemented	security	measures,	their	importance,	and	how	to	operate	within	the	enhanced	security	
framework.	

Deliverables:	

- Detailed	network	policy,	RBAC,	and	PSP	conBigurations	tailored	to	the	payment	processing	
application's	requirements.	

- Test	cases	and	results	demonstrating	the	effectiveness	and	impact	of	the	security	measures	on	the	
application's	functionality.	

- Documentation	and	guides	for	maintaining	and	extending	the	security	framework	of	the	Kubernetes	
cluster.	

Th
eO
psK
art



- A	knowledge-sharing	session	to	ensure	team	members	understand	and	can	effectively	work	with	the	
enhanced	security	measures.	

- A	report	or	presentation	summarizing	the	observability	features	implemented,	insights	gained	from	
monitoring	and	tracing	data,	and	recommendations	for	improving	application	performance	and	
reliability	based	on	observability	Bindings.

Th
eO
psK
art


	Advanced Docker and Kubernetes Course for Intermediate Students

