
Master Course on ArgoCD 

Module 1: Introduc5on to GitOps and ArgoCD 

Topics: 
• Understanding	GitOps	Principles	

• Introduction	to	ArgoCD	

• Core	Components	of	ArgoCD	

• Installation	and	Con:iguration	of	ArgoCD	

Project:		Set	up	ArgoCD	in	a	Minikube	cluster.	

Module 2: Applica5on Deployment with ArgoCD 

Topics: 
• Application	De:initions,	Con:igurations,	and	Environments	

• Deploying	Applications	with	ArgoCD	

• Understanding	ArgoCD	UI	and	CLI	

Project:	Deploy	a	multi-tier	application	using	ArgoCD.	

Module 3: Managing ArgoCD Resources 

Topics: 
• Declarative	Setup	for	ArgoCD	

• Managing	Repositories	and	Credentials	

• ArgoCD	Resource	Health	Status	

Project:	Automate	ArgoCD	resource	updates	through	Git.	

Module 4: Advanced ArgoCD Features 

Topics: 
• Rollbacks	and	Manual	Overrides	

• Automated	Sync	Policies	

• Disaster	Recovery	in	ArgoCD	

Project:	Implement	a	Blue-Green	Deployment	strategy	using	ArgoCD.	

Th
eO
psK
art



Module 5: ArgoCD Security Prac5ces 

Topics: 
• RBAC	in	ArgoCD	

• SSO	Integration	and	Access	Control	

• Secrets	Management	in	ArgoCD	

Project:		Con:igure	RBAC	and	SSO	for	an	ArgoCD	instance.	

Module 6: Customizing and Extending ArgoCD 

Topics: 
• Custom	Resource	De:initions	(CRDs)	with	ArgoCD	

• Writing	Custom	Plugins	for	ArgoCD	

• Integrating	ArgoCD	with	External	Tools	(e.g.,	Prometheus	for	monitoring)	

Project:	Create	a	custom	plugin	to	integrate	ArgoCD	with	an	external	logging	tool.	

Module 7: ArgoCD in Produc5on 

Topics: 
• Best	Practices	for	Using	ArgoCD	in	Production	

• Monitoring	and	Alerting	for	ArgoCD	

• Scaling	ArgoCD	for	Large	Scale	Deployments	

Project:		Set	up	a	complete	CI/CD	pipeline	using	ArgoCD	and	GitHub	Actions	for	a	microservices	
architecture.	

Module 8: Advanced ArgoCD Features 

Topics: 
• Case	Studies	of	ArgoCD	in	Enterprise	Environments	

• Troubleshooting	Common	ArgoCD	Issues	

• Future	Directions	of	ArgoCD	and	GitOps	

Project:	Analyze	a	real-world	case	study	and	propose	an	optimization	strategy	for	their	ArgoCD	setup.	




Th
eO
psK
art



Deliverables:	

- Comprehensive	lecture	notes	and	slides	for	each	module.	

- Step-by-step	guides	for	hands-on	projects.	

- Access	to	a	forum	for	Q&A	and	discussions.	

- Final	assessment	test	to	evaluate	understanding	and	practical	skills.	

Certi:icate	of	completion.	

This	course	structure	is	designed	to	provide	a	thorough	understanding	of	ArgoCD,	from	basic	concepts	
to	advanced	practices,	with	a	strong	focus	on	real-world	applications	and	projects	that	prepare	
students	for	implementing	ArgoCD	in	their	Kubernetes	environments	effectively.	

Hands-on Projects

Project	1:	Implementing	a	GitOps	Work8low	for	a	Multi-Service	Application	
Problem	Statement:		

As	a	Solution	Architect	at	a	software	development	company,	you	are	tasked	with	modernizing	the	
deployment	process	of	a	complex	multi-service	application.	The	application	is	composed	of	several	
microservices,	each	with	its	own	development	lifecycle	and	dependencies.	Your	challenge	is	to	
implement	a	GitOps	solution	using	ArgoCD	to	streamline	and	automate	deployments	across	multiple	
environments	(development,	staging,	production),	ensuring	consistency,	reliability,	and	speed	in	the	
deployment	process.	

Objective:	

To	set	up	a	GitOps	work:low	with	ArgoCD	that	automates	the	continuous	deployment	of	a	multi-service	
application	across	different	environments,	enhancing	the	operational	ef:iciency	and	deployment	
reliability.	

Task	Breakdown	

Task	1:	Environment	Setup	and	Con:iguration	

Objective:	Prepare	the	Kubernetes	environment	and	set	up	ArgoCD.	

Activities:	

• Set	up	a	Kubernetes	cluster	if	not	already	available,	ensuring	it	has	the	necessary	capacity	and	
con:igurations	to	host	the	multi-service	application.	

• Install	and	con:igure	ArgoCD	on	the	Kubernetes	cluster,	setting	up	access	controls	and	integrating	it	
with	the	version	control	system	hosting	the	application's	repositories.	

Th
eO
psK
art



Task	2:		Organizing	Application	Repositories	

Objective:	Structure	the	application's	code	repositories	for	GitOps.	

Activities:	

• Organize	the	application's	microservices	into	separate	repositories	or	a	monorepo	with	clear	
directory	structures,	ensuring	each	service's	con:igurations	and	Docker:iles	are	version	controlled.	

• Set	up	a	separate	con:iguration	repository	for	ArgoCD	manifests,	which	includes	the	application	
de:initions,	environments,	and	deployment	strategies.	

Task	3:	De:ining	the	Deployment	Pipeline	

Objective:		Create	ArgoCD	Application	de:initions	to	manage	the	deployment	lifecycle.	

Activities:		

• De:ine	Application	resources	in	ArgoCD	for	each	microservice,	specifying	the	source	repository,	path,	
and	destination	cluster	and	namespace.	

• Con:igure	sync	policies	for	automatic	deployment	to	development	environments	and	manual	
promotions	to	staging	and	production.	

Task	4:	Implementing	Advanced	Deployment	Strategies	

Objective:		Utilize	ArgoCD	to	implement	advanced	deployment	strategies	for	the	application.	

Activities:		

• Implement	blue/green	deployment	strategies	for	critical	microservices	to	minimize	downtime	and	
enable	quick	rollbacks.	

• Set	up	canary	deployments	for	new	features,	gradually	increasing	traf:ic	to	new	versions	based	on	
metrics	and	rollback	if	necessary.	

Task	5:	Monitoring	and	Validation	

Objective:		Ensure	the	application's	performance	and	reliability	through	integrated	monitoring	and	
validation	checks.	

Activities:		

• Integrate	monitoring	tools	with	Kubernetes	to	collect	and	visualize	metrics	from	the	microservices	
and	the	underlying	infrastructure.	

• Use	ArgoCD's	health	checks	and	rollouts	features	to	automate	validation	of	deployments	and	ensure	
that	only	healthy	versions	are	promoted	across	environments.	

Th
eO
psK
art



Deliverables:	

- A	fully	con:igured	ArgoCD	setup	managing	the	deployment	pipeline	for	the	multi-service	
application.	

- Documentation	detailing	the	GitOps	work:low,	repository	organization,	ArgoCD	con:iguration,	and	
deployment	strategies.	

- A	report	on	the	deployment	process's	ef:iciency	improvements,	challenges	encountered,	and	best	
practices	for	managing	multi-service	applications	with	GitOps.	

This	project	aims	to	provide	hands-on	experience	with	the	GitOps	methodology,	focusing	on	using	
ArgoCD	to	manage	complex	application	deployments	in	a	Kubernetes	environment.	Through	this	
project,	students	will	learn	to	leverage	automation,	improve	deployment	reliability,	and	adopt	best	
practices	in	continuous	delivery.	

===============================================================================	

Project	2:	Secure	Application	Deployment	with	ArgoCD	and	Vault	
Problem	Statement:	

In	a	rapidly	evolving	digital	landscape,	managing	sensitive	application	con:igurations	and	secrets	
securely	is	paramount.	As	a	DevOps	Engineer	at	a	:intech	company,	you're	faced	with	the	challenge	of	
deploying	applications	that	handle	sensitive	:inancial	data	across	multiple	environments.	The	existing	
deployment	processes	involve	manual	con:igurations	and	hard-coded	secrets,	posing	signi:icant	
security	risks.	Your	objective	is	to	leverage	ArgoCD	in	conjunction	with	HashiCorp	Vault	to	automate	
and	secure	the	deployment	process,	ensuring	sensitive	information	is	dynamically	managed	and	
injected	into	applications	without	exposing	it	in	code	or	con:iguration	:iles.	

Objective:	

Implement	a	secure,	automated	deployment	pipeline	using	ArgoCD	integrated	with	HashiCorp	Vault	
for	secret	management.	The	solution	should	enable	secure	secret	injection	into	application	
deployments	across	development,	staging,	and	production	environments.	

Task	Breakdown	

Task	1:	Setting	Up	the	Foundation	

Objective:	Prepare	the	foundational	infrastructure	by	setting	up	ArgoCD	and	HashiCorp	Vault	in	a	
Kubernetes	cluster.	

Activities:	

• Install	ArgoCD	in	the	Kubernetes	cluster,	ensuring	it	has	the	necessary	permissions	to	manage	
resources	across	namespaces.	

• Deploy	HashiCorp	Vault	in	the	cluster,	con:iguring	it	for	dynamic	secret	generation	and	secure	static	
secret	storage.	

Task	2:	Con:iguring	Vault	for	Dynamic	Secrets	

Th
eO
psK
art



Objective:	Con:igure	Vault	to	dynamically	generate	secrets	and	manage	static	secrets	needed	for	the	
application.	

Activities:	

• Set	up	Vault	policies	and	roles	speci:ic	to	the	application's	requirements,	enabling	dynamic	secrets	
for	databases	and	other	services.	

• Store	static	secrets	such	as	API	keys	and	tokens	in	Vault,	applying	appropriate	access	controls.	

Task	3:	Integrating	ArgoCD	with	Vault	

Objective:		Integrate	ArgoCD	with	Vault	to	enable	secure	secret	injection	into	application	deployments.	

Activities:		

• Implement	a	Vault	agent	injector	to	automatically	inject	secrets	into	the	pods	at	runtime,	based	on	
annotations	in	the	deployment	manifests.	

• Con:igure	ArgoCD	to	use	Vault	for	fetching	secrets	when	deploying	applications,	ensuring	no	
sensitive	data	is	stored	in	Git	repositories.	

Task	4:	Automating	Secure	Deployments	

Objective:		Automate	the	deployment	process,	ensuring	that	applications	receive	the	necessary	secrets	
from	Vault	securely	and	seamlessly.	

Activities:		

• De:ine	ArgoCD	Application	resources	for	each	microservice,	including	annotations	for	Vault	secret	
injection.	

• Create	a	CI/CD	pipeline	that	integrates	with	ArgoCD,	triggering	deployments	on	code	changes	while	
ensuring	Vault	secrets	are	dynamically	provided.	

Task	5:	Monitoring	and	Auditing	

Objective:		Establish	monitoring	and	auditing	mechanisms	for	Vault	and	ArgoCD	to	ensure	compliance	
and	security.	

Activities:		

• Set	up	monitoring	for	Vault	and	ArgoCD,	focusing	on	secret	access	patterns	and	deployment	health.	

• Enable	auditing	in	Vault	to	track	secret	access	and	usage,	con:iguring	alerts	for	unauthorized	access	
attempts.	

Deliverables:	

- A	fully	functional	ArgoCD	and	Vault	integration	within	a	Kubernetes	environment,	enabling	secure	
and	automated	application	deployments.	

- Detailed	documentation	on	the	setup	process,	con:igurations,	and	how	to	replicate	the	deployment	
pipeline	for	new	applications.	

Th
eO
psK
art



- A	comprehensive	audit	log	setup	for	monitoring	access	and	usage	of	secrets,	ensuring	compliance	
with	security	policies.	

- This	project	aims	to	address	the	critical	need	for	secure	application	deployment	in	cloud-native	
environments.	By	integrating	ArgoCD	with	HashiCorp	Vault,	students	will	gain	hands-on	experience	
in	managing	secrets	securely	and	automating	deployments,	preparing	them	for	challenges	in	secure	
cloud	application	management.	

Project	3:	Blue-Green	Deployment	Strategy	for	Zero-Downtime	Updates	
Problem	Statement	:	

In	the	fast-paced	world	of	digital	services,	ensuring	zero	downtime	during	application	updates	is	
crucial	for	maintaining	user	satisfaction	and	service	continuity.	As	a	Solution	Architect	at	a	leading	e-
commerce	company,	you	face	the	challenge	of	updating	a	critical	production	application	without	
interrupting	the	service.	The	current	deployment	process	is	prone	to	downtime	and	lacks	a	robust	
rollback	mechanism,	affecting	customer	experience	during	updates.	Your	mission	is	to	design	and	
implement	a	blue-green	deployment	strategy	using	ArgoCD,	aiming	for	seamless	updates	and	instant	
rollbacks	if	the	new	version	underperforms	or	encounters	issues.	

Objective:	

Develop	and	execute	a	blue-green	deployment	strategy	for	a	critical	production	application	using	
ArgoCD,	ensuring	zero	downtime	during	updates	and	an	ef:icient	rollback	mechanism.	

Task	Breakdown	

Task	1:		Analyzing	the	Current	Environment	

Objective:	Assess	the	existing	application	deployment	setup	and	prepare	for	implementing	a	blue-
green	strategy.	

Activities:	

• Evaluate	the	current	Kubernetes	and	ArgoCD	con:iguration	to	identify	necessary	adjustments	for	
supporting	blue-green	deployments.	

• Document	application	dependencies	and	services	that	need	coordination	during	the	deployment	
process.	

Task	2:	Con:iguring	Blue-Green	Deployments	in	ArgoCD	

Objective:	Set	up	ArgoCD	to	manage	blue-green	deployments,	de:ining	two	identical	environments	for	
the	production	application.	

Activities:	

• Create	two	sets	of	resources	in	Kubernetes,	labeled	"blue"	and	"green,"	each	capable	of	running	the	
application	independently.	

• Con:igure	ArgoCD	applications	and	sync	windows	to	manage	deployments	to	these	environments,	
ensuring	only	one	is	live	at	a	time.	

Th
eO
psK
art



Task	3:	Automating	Traf:ic	Switching	

Objective:		Implement	an	automated	process	for	switching	traf:ic	between	blue	and	green	
environments	based	on	deployment	success.	

Activities:		

• Integrate	a	service	mesh	or	ingress	controller	capable	of	dynamically	routing	traf:ic	to	manage	the	
switch	between	blue	and	green	environments.	

• De:ine	health	checks	and	metrics	that	will	determine	the	success	of	the	deployment	and	trigger	the	
traf:ic	switch.	

Task	4:	Rollback	Mechanism	

Objective:		Establish	an	instant	rollback	mechanism	to	revert	to	the	previous	version	if	the	new	
deployment	fails.	

Activities:		

• Utilize	ArgoCD's	rollback	features	to	quickly	revert	to	the	previous	stable	version	in	case	of	
deployment	failure.	

• Test	the	rollback	process	under	various	failure	scenarios	to	ensure	it	works	as	expected.	

Task	5:	Monitoring	and	Validation	

Objective:		Monitor	the	deployment	process	and	validate	the	success	of	the	blue-green	strategy.	

Activities:		

• Implement	comprehensive	monitoring	for	both	blue	and	green	environments	to	track	performance	
metrics	and	detect	anomalies.	

• Conduct	A/B	testing	during	the	initial	traf:ic	switch	to	measure	user	experience	and	application	
performance.	

Deliverables:	

• A	detailed	plan	and	implementation	guide	for	setting	up	blue-green	deployments	using	ArgoCD	in	a	
Kubernetes	environment.	

• Scripts	or	con:iguration	:iles	used	to	automate	traf:ic	switching	and	rollbacks.	

• A	monitoring	and	performance	analysis	report	that	validates	the	zero	downtime	objective	and	
ef:iciency	of	the	rollback	mechanism.	

This	project	will	provide	students	with	practical	skills	in	implementing	advanced	deployment	
strategies,	ensuring	application	availability,	and	enhancing	deployment	safety	in	production	

Th
eO
psK
art



environments.	By	mastering	blue-green	deployments	with	ArgoCD,	students	will	be	equipped	to	
handle	critical	updates	seamlessly	and	maintain	high	availability	standards.	

===============================================================================		

Project	4:	Scaling	a	SaaS	Platform	with	ArgoCD	
Problem	Statement	:	

In	today’s	cloud-native	ecosystem,	SaaS	platforms	must	be	resilient	and	scalable	to	handle	varying	
loads	ef:iciently.	As	a	SaaS	Platform	Engineer	for	a	rapidly	growing	online	analytics	service,	you	are	
faced	with	the	challenge	of	ensuring	the	platform's	scalability	to	meet	:luctuating	customer	demands.	
The	current	deployment	and	scaling	processes	are	manual	and	time-consuming,	leading	to	either	
resource	underutilization	or	potential	service	degradation	during	peak	times.	Your	goal	is	to	leverage	
ArgoCD,	along	with	Kubernetes,	to	automate	the	scaling	of	resources,	ensuring	the	platform	
dynamically	adjusts	its	capacity	based	on	real-time	demand	without	manual	oversight.	

Objective:	

Implement	an	automated	scaling	solution	for	a	SaaS	application	using	ArgoCD	and	Kubernetes,	
allowing	for	dynamic	adjustment	of	resources	to	match	customer	demand	accurately.	

Task	Breakdown	

Task	1:		Preparing	the	Kubernetes	Environment	

Objective:	Set	up	and	con:igure	a	Kubernetes	cluster	optimized	for	dynamic	scaling.	

Activities:	

• Con:igure	a	Kubernetes	cluster	with	metrics-server	enabled	for	resource	metrics	collection.	

• Install	ArgoCD	and	integrate	it	with	the	Kubernetes	cluster,	setting	up	appropriate	access	
permissions	for	deploying	and	managing	resources.	

Task	2:	De:ining	Scalable	Application	Deployments	

Objective:	Prepare	the	SaaS	application's	deployment	con:igurations	for	scalability.	

Activities:	

• Containerize	the	SaaS	application	components,	if	not	already,	and	push	the	images	to	a	container	
registry.	

• Create	Kubernetes	deployment	manifests	with	Horizontal	Pod	Autoscaler	(HPA)	con:igurations	for	
each	microservice,	de:ining	metrics	and	thresholds	for	scaling.	

Task	3:	Automating	Resource	Scaling	with	ArgoCD	

Objective:		Use	ArgoCD	to	manage	the	deployment	and	scaling	of	the	SaaS	platform.	

Activities:		

Th
eO
psK
art



• De:ine	ArgoCD	Application	resources	for	the	SaaS	platform,	pointing	to	Git	repositories	containing	
Kubernetes	manifests.	

• Con:igure	sync	policies	in	ArgoCD	to	automatically	apply	updates	and	scaling	con:igurations	from	the	
Git	repositories	to	the	Kubernetes	cluster.	

Task	4:	Implementing	Cluster	Autoscaling	

Objective:		Ensure	the	Kubernetes	cluster	can	scale	its	node	pool	based	on	the	workload	requirements.	

Activities:		

• Enable	cluster	autoscaler	in	the	Kubernetes	cluster,	con:iguring	it	to	monitor	and	adjust	the	number	
of	nodes	based	on	the	current	resource	demands	of	the	application.	

• Test	the	cluster	autoscaler	by	simulating	varying	loads	and	observing	the	cluster's	response	in	
adding	or	removing	nodes.	

Task	5:	Monitoring	and	Optimization	

Objective:		Monitor	the	SaaS	platform's	performance	and	optimize	the	scaling	con:igurations.	

Activities:		

• Implement	monitoring	tools	such	as	Prometheus	and	Grafana	to	collect	and	visualize	metrics	related	
to	application	performance	and	resource	utilization.	

• Analyze	the	collected	data	to	:ine-tune	the	HPA	and	cluster	autoscaler	settings,	ensuring	ef:icient	
resource	use	and	optimal	customer	experience.	

Deliverables:	

- A	fully	con:igured	and	operational	Kubernetes	environment	capable	of	dynamically	scaling	the	SaaS	
application.	

- ArgoCD	application	con:igurations	and	Kubernetes	manifests	for	scalable	deployments.	

- A	monitoring	and	analytics	report	detailing	the	scaling	behavior	under	various	loads	and	
recommendations	for	further	optimizations.	

This	project	aims	to	empower	students	with	the	knowledge	and	skills	to	build	and	manage	scalable	
cloud-native	applications.	By	leveraging	ArgoCD	alongside	Kubernetes'	scaling	capabilities,	students	
will	learn	to	create	resilient	and	adaptable	SaaS	platforms	ready	to	meet	the	demands	of	the	modern	
user	base.	

===============================================================================	

Th
eO
psK
art



Project	5:	Implementing	Canary	Releases	for	a	FinTech	Application	
Problem	Statement:	

In	the	competitive	FinTech	sector,	deploying	new	features	with	high	reliability	and	minimal	risk	to	user	
experience	is	critical.	As	a	DevOps	Engineer	at	a	leading	FinTech	company,	you	are	tasked	with	rolling	
out	a	signi:icant	new	feature	in	the	company's	:lagship	product.	To	mitigate	risks	and	gather	user	
feedback,	you	are	to	implement	a	canary	release	strategy	using	ArgoCD.	This	strategy	involves	
exposing	the	new	feature	to	a	controlled	subset	of	users	initially,	allowing	for	performance	monitoring	
and	feedback	collection	before	a	full	rollout	or	a	potential	rollback.	

Objective:	

Deploy	a	new	feature	using	a	canary	release	strategy	with	ArgoCD	for	the	FinTech	company's	:lagship	
product,	ensuring	a	controlled	and	monitored	feature	exposure	to	minimize	risk.	

Task	Breakdown	

Task	1:		Con:iguring	the	Canary	Release	Environment	

Objective:	Prepare	the	application	and	ArgoCD	for	a	canary	release.	

Activities:	

• Set	up	feature	:lagging	within	the	application	code	to	enable	toggling	the	new	feature	on	and	off.	

• Con:igure	ArgoCD	with	a	canary	deployment	resource,	de:ining	the	criteria	for	promotion	and	
rollback	based	on	metrics.	

Task	2:	De:ining	Metrics	for	Evaluation	

Objective:	Establish	key	performance	indicators	(KPIs)	and	user	feedback	mechanisms	to	evaluate	the	
new	feature.	

Activities:	

• Integrate	application	performance	monitoring	tools	to	track	the	new	feature's	impact	on	system	
performance	and	user	experience.	

• Set	up	user	feedback	channels	speci:ically	for	early	adopters	of	the	new	feature	to	gather	insights	
and	concerns.	

Task	3:	Implementing	the	Canary	Rollout	

Objective:		Execute	the	canary	release,	initially	exposing	the	new	feature	to	a	small	percentage	of	users.	

Activities:		

• Use	ArgoCD	to	deploy	the	new	feature	version	to	a	limited	subset	of	the	user	base,	leveraging	
Kubernetes'	service	routing	for	traf:ic	management.	

Th
eO
psK
art



• Monitor	application	performance	and	user	feedback	in	real-time,	comparing	it	against	the	
established	KPIs.	

Task	4:	Analyzing	Data	and	Making	Decisions	

Objective:		Evaluate	the	canary	release's	success	and	decide	on	the	next	steps.	

Activities:		

• Analyze	collected	performance	data	and	user	feedback	to	assess	the	new	feature's	impact.	

• Make	an	informed	decision	on	whether	to	proceed	with	a	full	rollout,	expand	the	canary	release,	or	
rollback	based	on	evaluation	results.	

Task	5:	Full	Rollout	or	Rollback	

Objective:		Conduct	a	full	rollout	of	the	new	feature	to	all	users	or	rollback	based	on	the	canary	
release's	evaluation.	

Activities:		

• If	the	decision	is	to	proceed	with	a	full	rollout,	use	ArgoCD	to	deploy	the	new	feature	across	all	
environments,	monitoring	for	any	issues.	

• In	case	of	rollback,	revert	to	the	previous	application	version	using	ArgoCD,	ensuring	minimal	impact	
on	the	user	experience.	

Deliverables:	

- A	detailed	implementation	plan	for	the	canary	release,	including	environment	setup,	monitoring	
setup,	and	rollout	strategy.	

- Scripts	or	con:iguration	:iles	for	ArgoCD	and	Kubernetes	to	manage	the	canary	deployment.	

- A	comprehensive	report	on	the	canary	release's	performance	analysis,	user	feedback,	and	the	
rationale	behind	the	decision	for	a	full	rollout	or	rollback.	

This	project	equips	students	with	practical	skills	in	implementing	risk-minimized	deployment	
strategies	in	critical	applications.	By	mastering	canary	releases	with	ArgoCD	in	a	FinTech	environment,	
students	will	learn	to	balance	innovation	with	reliability,	ensuring	user	satisfaction	and	system	
stability.	

===============================================================================	

Th
eO
psK
art



 

EACH	PROJECT	IS	DESIGNED	TO	SIMULATE	SCENARIOS	THAT	
PROFESSIONALS	MIGHT	ENCOUNTER	IN	REAL-WORLD	SETTINGS,	
ALLOWING	STUDENTS	TO	APPLY	THEIR	KNOWLEDGE	OF	ARGOCD	
AND	GITOPS	PRINCIPLES	TO	SOLVE	PRACTICAL	PROBLEMS.	

Th
eO
psK
art


	Master Course on ArgoCD

