
Master Course on ArgoCD

Module 1: Introduction to GitOps and ArgoCD

Topics:
• Understanding GitOps Principles	

• Introduction to ArgoCD	

• Core Components of ArgoCD	

• Installation and Configuration of ArgoCD	

Project: Set up ArgoCD in a Minikube cluster.	

Module 2: Application Deployment with ArgoCD

Topics:
• Application Definitions, Configurations, and Environments	

• Deploying Applications with ArgoCD	

• Understanding ArgoCD UI and CLI	

Project: Deploy a multi-tier application using ArgoCD.	

Module 3: Managing ArgoCD Resources

Topics:
• Declarative Setup for ArgoCD	

• Managing Repositories and Credentials	

• ArgoCD Resource Health Status	

Project: Automate ArgoCD resource updates through Git.	

Module 4: Advanced ArgoCD Features

Topics:
• Rollbacks and Manual Overrides	

• Automated Sync Policies	

• Disaster Recovery in ArgoCD	

Project: Implement a Blue-Green Deployment strategy using ArgoCD.	

Th
eO
psK
art

Module 5: ArgoCD Security Practices

Topics:
• RBAC in ArgoCD	

• SSO Integration and Access Control	

• Secrets Management in ArgoCD	

Project: Configure RBAC and SSO for an ArgoCD instance.	

Module 6: Customizing and Extending ArgoCD

Topics:
• Custom Resource Definitions (CRDs) with ArgoCD	

• Writing Custom Plugins for ArgoCD	

• Integrating ArgoCD with External Tools (e.g., Prometheus for monitoring)	

Project: Create a custom plugin to integrate ArgoCD with an external logging tool.	

Module 7: ArgoCD in Production

Topics:
• Best Practices for Using ArgoCD in Production	

• Monitoring and Alerting for ArgoCD	

• Scaling ArgoCD for Large Scale Deployments	

Project: Set up a complete CI/CD pipeline using ArgoCD and GitHub Actions for a microservices
architecture.	

Module 8: Advanced ArgoCD Features

Topics:
• Case Studies of ArgoCD in Enterprise Environments	

• Troubleshooting Common ArgoCD Issues	

• Future Directions of ArgoCD and GitOps	

Project: Analyze a real-world case study and propose an optimization strategy for their ArgoCD setup.	

Th
eO
psK
art

Deliverables:	

- Comprehensive lecture notes and slides for each module.	

- Step-by-step guides for hands-on projects.	

- Access to a forum for Q&A and discussions.	

- Final assessment test to evaluate understanding and practical skills.	

Certificate of completion.	

This course structure is designed to provide a thorough understanding of ArgoCD, from basic concepts
to advanced practices, with a strong focus on real-world applications and projects that prepare
students for implementing ArgoCD in their Kubernetes environments effectively.	

Hands-on Projects

Project 1: Implementing a GitOps Workflow for a Multi-Service Application	
Problem Statement: 	

As a Solution Architect at a software development company, you are tasked with modernizing the
deployment process of a complex multi-service application. The application is composed of several
microservices, each with its own development lifecycle and dependencies. Your challenge is to
implement a GitOps solution using ArgoCD to streamline and automate deployments across multiple
environments (development, staging, production), ensuring consistency, reliability, and speed in the
deployment process.	

Objective:	

To set up a GitOps workflow with ArgoCD that automates the continuous deployment of a multi-service
application across different environments, enhancing the operational efficiency and deployment
reliability.	

Task Breakdown	

Task 1: Environment Setup and Configuration	

Objective: Prepare the Kubernetes environment and set up ArgoCD.	

Activities:	

• Set up a Kubernetes cluster if not already available, ensuring it has the necessary capacity and
configurations to host the multi-service application.	

• Install and configure ArgoCD on the Kubernetes cluster, setting up access controls and integrating it
with the version control system hosting the application's repositories.	

Th
eO
psK
art

Task 2: Organizing Application Repositories	

Objective: Structure the application's code repositories for GitOps.	

Activities:	

• Organize the application's microservices into separate repositories or a monorepo with clear
directory structures, ensuring each service's configurations and Dockerfiles are version controlled.	

• Set up a separate configuration repository for ArgoCD manifests, which includes the application
definitions, environments, and deployment strategies.	

Task 3: Defining the Deployment Pipeline	

Objective: Create ArgoCD Application definitions to manage the deployment lifecycle.	

Activities: 	

• Define Application resources in ArgoCD for each microservice, specifying the source repository, path,
and destination cluster and namespace.	

• Configure sync policies for automatic deployment to development environments and manual
promotions to staging and production.	

Task 4: Implementing Advanced Deployment Strategies	

Objective: Utilize ArgoCD to implement advanced deployment strategies for the application.	

Activities: 	

• Implement blue/green deployment strategies for critical microservices to minimize downtime and
enable quick rollbacks.	

• Set up canary deployments for new features, gradually increasing traffic to new versions based on
metrics and rollback if necessary.	

Task 5: Monitoring and Validation	

Objective: Ensure the application's performance and reliability through integrated monitoring and
validation checks.	

Activities: 	

• Integrate monitoring tools with Kubernetes to collect and visualize metrics from the microservices
and the underlying infrastructure.	

• Use ArgoCD's health checks and rollouts features to automate validation of deployments and ensure
that only healthy versions are promoted across environments.	

Th
eO
psK
art

Deliverables:	

- A fully configured ArgoCD setup managing the deployment pipeline for the multi-service
application.	

- Documentation detailing the GitOps workflow, repository organization, ArgoCD configuration, and
deployment strategies.	

- A report on the deployment process's efficiency improvements, challenges encountered, and best
practices for managing multi-service applications with GitOps.	

This project aims to provide hands-on experience with the GitOps methodology, focusing on using
ArgoCD to manage complex application deployments in a Kubernetes environment. Through this
project, students will learn to leverage automation, improve deployment reliability, and adopt best
practices in continuous delivery.	

===	

Project 2: Secure Application Deployment with ArgoCD and Vault	
Problem Statement:	

In a rapidly evolving digital landscape, managing sensitive application configurations and secrets
securely is paramount. As a DevOps Engineer at a fintech company, you're faced with the challenge of
deploying applications that handle sensitive financial data across multiple environments. The existing
deployment processes involve manual configurations and hard-coded secrets, posing significant
security risks. Your objective is to leverage ArgoCD in conjunction with HashiCorp Vault to automate
and secure the deployment process, ensuring sensitive information is dynamically managed and
injected into applications without exposing it in code or configuration files.	

Objective:	

Implement a secure, automated deployment pipeline using ArgoCD integrated with HashiCorp Vault
for secret management. The solution should enable secure secret injection into application
deployments across development, staging, and production environments.	

Task Breakdown	

Task 1: Setting Up the Foundation	

Objective: Prepare the foundational infrastructure by setting up ArgoCD and HashiCorp Vault in a
Kubernetes cluster.	

Activities:	

• Install ArgoCD in the Kubernetes cluster, ensuring it has the necessary permissions to manage
resources across namespaces.	

• Deploy HashiCorp Vault in the cluster, configuring it for dynamic secret generation and secure static
secret storage.	

Task 2: Configuring Vault for Dynamic Secrets	

Th
eO
psK
art

Objective: Configure Vault to dynamically generate secrets and manage static secrets needed for the
application.	

Activities:	

• Set up Vault policies and roles specific to the application's requirements, enabling dynamic secrets
for databases and other services.	

• Store static secrets such as API keys and tokens in Vault, applying appropriate access controls.	

Task 3: Integrating ArgoCD with Vault	

Objective: Integrate ArgoCD with Vault to enable secure secret injection into application deployments.	

Activities: 	

• Implement a Vault agent injector to automatically inject secrets into the pods at runtime, based on
annotations in the deployment manifests.	

• Configure ArgoCD to use Vault for fetching secrets when deploying applications, ensuring no
sensitive data is stored in Git repositories.	

Task 4: Automating Secure Deployments	

Objective: Automate the deployment process, ensuring that applications receive the necessary secrets
from Vault securely and seamlessly.	

Activities: 	

• Define ArgoCD Application resources for each microservice, including annotations for Vault secret
injection.	

• Create a CI/CD pipeline that integrates with ArgoCD, triggering deployments on code changes while
ensuring Vault secrets are dynamically provided.	

Task 5: Monitoring and Auditing	

Objective: Establish monitoring and auditing mechanisms for Vault and ArgoCD to ensure compliance
and security.	

Activities: 	

• Set up monitoring for Vault and ArgoCD, focusing on secret access patterns and deployment health.	

• Enable auditing in Vault to track secret access and usage, configuring alerts for unauthorized access
attempts.	

Deliverables:	

- A fully functional ArgoCD and Vault integration within a Kubernetes environment, enabling secure
and automated application deployments.	

- Detailed documentation on the setup process, configurations, and how to replicate the deployment
pipeline for new applications.	

Th
eO
psK
art

- A comprehensive audit log setup for monitoring access and usage of secrets, ensuring compliance
with security policies.	

- This project aims to address the critical need for secure application deployment in cloud-native
environments. By integrating ArgoCD with HashiCorp Vault, students will gain hands-on experience
in managing secrets securely and automating deployments, preparing them for challenges in secure
cloud application management.	

Project 3: Blue-Green Deployment Strategy for Zero-Downtime Updates	
Problem Statement :	

In the fast-paced world of digital services, ensuring zero downtime during application updates is
crucial for maintaining user satisfaction and service continuity. As a Solution Architect at a leading e-
commerce company, you face the challenge of updating a critical production application without
interrupting the service. The current deployment process is prone to downtime and lacks a robust
rollback mechanism, affecting customer experience during updates. Your mission is to design and
implement a blue-green deployment strategy using ArgoCD, aiming for seamless updates and instant
rollbacks if the new version underperforms or encounters issues.	

Objective:	

Develop and execute a blue-green deployment strategy for a critical production application using
ArgoCD, ensuring zero downtime during updates and an efficient rollback mechanism.	

Task Breakdown	

Task 1: Analyzing the Current Environment	

Objective: Assess the existing application deployment setup and prepare for implementing a blue-
green strategy.	

Activities:	

• Evaluate the current Kubernetes and ArgoCD configuration to identify necessary adjustments for
supporting blue-green deployments.	

• Document application dependencies and services that need coordination during the deployment
process.	

Task 2: Configuring Blue-Green Deployments in ArgoCD	

Objective: Set up ArgoCD to manage blue-green deployments, defining two identical environments for
the production application.	

Activities:	

• Create two sets of resources in Kubernetes, labeled "blue" and "green," each capable of running the
application independently.	

• Configure ArgoCD applications and sync windows to manage deployments to these environments,
ensuring only one is live at a time.	

Th
eO
psK
art

Task 3: Automating Traffic Switching	

Objective: Implement an automated process for switching traffic between blue and green
environments based on deployment success.	

Activities: 	

• Integrate a service mesh or ingress controller capable of dynamically routing traffic to manage the
switch between blue and green environments.	

• Define health checks and metrics that will determine the success of the deployment and trigger the
traffic switch.	

Task 4: Rollback Mechanism	

Objective: Establish an instant rollback mechanism to revert to the previous version if the new
deployment fails.	

Activities: 	

• Utilize ArgoCD's rollback features to quickly revert to the previous stable version in case of
deployment failure.	

• Test the rollback process under various failure scenarios to ensure it works as expected.	

Task 5: Monitoring and Validation	

Objective: Monitor the deployment process and validate the success of the blue-green strategy.	

Activities: 	

• Implement comprehensive monitoring for both blue and green environments to track performance
metrics and detect anomalies.	

• Conduct A/B testing during the initial traffic switch to measure user experience and application
performance.	

Deliverables:	

• A detailed plan and implementation guide for setting up blue-green deployments using ArgoCD in a
Kubernetes environment.	

• Scripts or configuration files used to automate traffic switching and rollbacks.	

• A monitoring and performance analysis report that validates the zero downtime objective and
efficiency of the rollback mechanism.	

This project will provide students with practical skills in implementing advanced deployment
strategies, ensuring application availability, and enhancing deployment safety in production

Th
eO
psK
art

environments. By mastering blue-green deployments with ArgoCD, students will be equipped to
handle critical updates seamlessly and maintain high availability standards.	

=== 	

Project 4: Scaling a SaaS Platform with ArgoCD	
Problem Statement :	

In today’s cloud-native ecosystem, SaaS platforms must be resilient and scalable to handle varying
loads efficiently. As a SaaS Platform Engineer for a rapidly growing online analytics service, you are
faced with the challenge of ensuring the platform's scalability to meet fluctuating customer demands.
The current deployment and scaling processes are manual and time-consuming, leading to either
resource underutilization or potential service degradation during peak times. Your goal is to leverage
ArgoCD, along with Kubernetes, to automate the scaling of resources, ensuring the platform
dynamically adjusts its capacity based on real-time demand without manual oversight.	

Objective:	

Implement an automated scaling solution for a SaaS application using ArgoCD and Kubernetes,
allowing for dynamic adjustment of resources to match customer demand accurately.	

Task Breakdown	

Task 1: Preparing the Kubernetes Environment	

Objective: Set up and configure a Kubernetes cluster optimized for dynamic scaling.	

Activities:	

• Configure a Kubernetes cluster with metrics-server enabled for resource metrics collection.	

• Install ArgoCD and integrate it with the Kubernetes cluster, setting up appropriate access
permissions for deploying and managing resources.	

Task 2: Defining Scalable Application Deployments	

Objective: Prepare the SaaS application's deployment configurations for scalability.	

Activities:	

• Containerize the SaaS application components, if not already, and push the images to a container
registry.	

• Create Kubernetes deployment manifests with Horizontal Pod Autoscaler (HPA) configurations for
each microservice, defining metrics and thresholds for scaling.	

Task 3: Automating Resource Scaling with ArgoCD	

Objective: Use ArgoCD to manage the deployment and scaling of the SaaS platform.	

Activities: 	

Th
eO
psK
art

• Define ArgoCD Application resources for the SaaS platform, pointing to Git repositories containing
Kubernetes manifests.	

• Configure sync policies in ArgoCD to automatically apply updates and scaling configurations from the
Git repositories to the Kubernetes cluster.	

Task 4: Implementing Cluster Autoscaling	

Objective: Ensure the Kubernetes cluster can scale its node pool based on the workload requirements.	

Activities: 	

• Enable cluster autoscaler in the Kubernetes cluster, configuring it to monitor and adjust the number
of nodes based on the current resource demands of the application.	

• Test the cluster autoscaler by simulating varying loads and observing the cluster's response in
adding or removing nodes.	

Task 5: Monitoring and Optimization	

Objective: Monitor the SaaS platform's performance and optimize the scaling configurations.	

Activities: 	

• Implement monitoring tools such as Prometheus and Grafana to collect and visualize metrics related
to application performance and resource utilization.	

• Analyze the collected data to fine-tune the HPA and cluster autoscaler settings, ensuring efficient
resource use and optimal customer experience.	

Deliverables:	

- A fully configured and operational Kubernetes environment capable of dynamically scaling the SaaS
application.	

- ArgoCD application configurations and Kubernetes manifests for scalable deployments.	

- A monitoring and analytics report detailing the scaling behavior under various loads and
recommendations for further optimizations.	

This project aims to empower students with the knowledge and skills to build and manage scalable
cloud-native applications. By leveraging ArgoCD alongside Kubernetes' scaling capabilities, students
will learn to create resilient and adaptable SaaS platforms ready to meet the demands of the modern
user base.	

===	

Th
eO
psK
art

Project 5: Implementing Canary Releases for a FinTech Application	
Problem Statement:	

In the competitive FinTech sector, deploying new features with high reliability and minimal risk to user
experience is critical. As a DevOps Engineer at a leading FinTech company, you are tasked with rolling
out a significant new feature in the company's flagship product. To mitigate risks and gather user
feedback, you are to implement a canary release strategy using ArgoCD. This strategy involves
exposing the new feature to a controlled subset of users initially, allowing for performance monitoring
and feedback collection before a full rollout or a potential rollback.	

Objective:	

Deploy a new feature using a canary release strategy with ArgoCD for the FinTech company's flagship
product, ensuring a controlled and monitored feature exposure to minimize risk.	

Task Breakdown	

Task 1: Configuring the Canary Release Environment	

Objective: Prepare the application and ArgoCD for a canary release.	

Activities:	

• Set up feature flagging within the application code to enable toggling the new feature on and off.	

• Configure ArgoCD with a canary deployment resource, defining the criteria for promotion and
rollback based on metrics.	

Task 2: Defining Metrics for Evaluation	

Objective: Establish key performance indicators (KPIs) and user feedback mechanisms to evaluate the
new feature.	

Activities:	

• Integrate application performance monitoring tools to track the new feature's impact on system
performance and user experience.	

• Set up user feedback channels specifically for early adopters of the new feature to gather insights
and concerns.	

Task 3: Implementing the Canary Rollout	

Objective: Execute the canary release, initially exposing the new feature to a small percentage of users.	

Activities: 	

• Use ArgoCD to deploy the new feature version to a limited subset of the user base, leveraging
Kubernetes' service routing for traffic management.	

Th
eO
psK
art

• Monitor application performance and user feedback in real-time, comparing it against the
established KPIs.	

Task 4: Analyzing Data and Making Decisions	

Objective: Evaluate the canary release's success and decide on the next steps.	

Activities: 	

• Analyze collected performance data and user feedback to assess the new feature's impact.	

• Make an informed decision on whether to proceed with a full rollout, expand the canary release, or
rollback based on evaluation results.	

Task 5: Full Rollout or Rollback	

Objective: Conduct a full rollout of the new feature to all users or rollback based on the canary
release's evaluation.	

Activities: 	

• If the decision is to proceed with a full rollout, use ArgoCD to deploy the new feature across all
environments, monitoring for any issues.	

• In case of rollback, revert to the previous application version using ArgoCD, ensuring minimal impact
on the user experience.	

Deliverables:	

- A detailed implementation plan for the canary release, including environment setup, monitoring
setup, and rollout strategy.	

- Scripts or configuration files for ArgoCD and Kubernetes to manage the canary deployment.	

- A comprehensive report on the canary release's performance analysis, user feedback, and the
rationale behind the decision for a full rollout or rollback.	

This project equips students with practical skills in implementing risk-minimized deployment
strategies in critical applications. By mastering canary releases with ArgoCD in a FinTech environment,
students will learn to balance innovation with reliability, ensuring user satisfaction and system
stability.	

===	

Th
eO
psK
art

EACH PROJECT IS DESIGNED TO SIMULATE SCENARIOS THAT
PROFESSIONALS MIGHT ENCOUNTER IN REAL-WORLD SETTINGS,
ALLOWING STUDENTS TO APPLY THEIR KNOWLEDGE OF ARGOCD
AND GITOPS PRINCIPLES TO SOLVE PRACTICAL PROBLEMS.	

Th
eO
psK
art

	Master Course on ArgoCD

