
Advanced AWS Course Structure for Intermediate Students 

Module 1: Advanced Networking in AWS 
• Deep	Dive	into	VPC	Peering,	VPN,	and	Direct	Connect	

• Implementing	Advanced	Routing	Techniques	

• Hybrid	Cloud	Architectures	

Module 2: Deep Dive into AWS Storage Solu@ons 
• Advanced	S3	Features	(Lifecycle	Policies,	Versioning,	Cross-Region	Replication)	

• Amazon	S3	Glacier	for	Data	Archiving	

• Data	Lake	Architecture	with	Amazon	S3	

Module 3: High Availability and Fault Tolerance 
• Designing	Highly	Available	Architectures	

• Multi-AZ	and	Multi-Region	Deployments	

• Disaster	Recovery	Strategies	

Module 4: Scalable and Serverless Architectures 
• Scaling	Applications	with	Amazon	ECS	and	EKS	

• Building	Serverless	Applications	with	AWS	Lambda	and	Amazon	API	Gateway	

• Serverless	Application	Model	(SAM)	

Module 5: Advanced Database Solu@ons 
• Amazon	RDS	Performance	Optimization	

• DynamoDB	Advanced	Features	(Global	Tables,	DAX)	

• Amazon	Aurora	Deep	Dive	

Module 6: Security, Governance, and Compliance 
• Advanced	IAM	Policies	and	Strategies	

• AWS	Shield	and	WAF	for	Advanced	Threat	Protection	

• Compliance	and	Governance	using	AWS	ConUig	and	AWS	Organizations	

Module 7: DevOps and Con@nuous Integra@on/Con@nuous Deployment 
• Implementing	Full	CI/CD	Pipelines	with	AWS	Developer	Tools	

• Infrastructure	as	Code	with	AWS	CloudFormation	and	AWS	CDK	

• Microservices	Deployment	with	Docker	and	Kubernetes	on	AWS	

Th
eO
psK
art



Module 8: Monitoring, Logging, and Troubleshoo@ng 
• Advanced	Monitoring	with	Amazon	CloudWatch	and	AWS	X-Ray	

• Log	Analysis	with	Amazon	Elasticsearch	Service	

• Troubleshooting	Common	AWS	Issues	

Module 9: Cost Op@miza@on and Management 
• Cost	Optimization	Techniques	and	Tools	

• Reserved	Instances	and	Savings	Plans	

• Managing	and	Reporting	AWS	Costs	

Module 10: Emerging Technologies and Trends 
• Cost	Optimization	Techniques	and	Tools	

• Reserved	Instances	and	Savings	Plans	

• Managing	and	Reporting	AWS	Costs	

Hands-on Projects

Networking	Project:	Hybrid	Cloud	Solution	Design	and	Implementation	
Project	Overview:		

A	simulated	enterprise	seeks	to	extend	its	on-premises	infrastructure	to	AWS	to	leverage	cloud	
resources	for	certain	workloads	while	keeping	sensitive	operations	on-premises.	This	project	involves	
creating	a	hybrid	cloud	architecture	that	ensures	seamless	connectivity,	security,	and	scalability	
between	the	on-premises	data	center	and	AWS	services.	

Objective:	

Design	and	implement	a	robust	hybrid	cloud	solution	using	AWS	Direct	Connect	and	VPN,	ensuring	
secure,	low-latency	connectivity	between	the	on-premises	environment	and	AWS.	

Task	1:	Assess	Requirements	and	Plan	the	Hybrid	Architecture	

Objective:	Identify	the	enterprise's	speciUic	needs	for	the	hybrid	setup,	including	which	workloads	to	
migrate	and	which	to	retain	on-premises.	

Activities:	

Conduct	meetings	with	simulated	enterprise	stakeholders	to	gather	requirements.	Document	the	
network	architecture,	including	on-premises	resources	and	AWS	resources	to	be	connected.	Choose	
between	AWS	Direct	Connect,	VPN,	or	a	combination	of	both	based	on	latency,	throughput	needs,	and	
cost	considerations.	

Th
eO
psK
art



Task	2:	Set	Up	AWS	Direct	Connect	

Objective:	Establish	a	dedicated	network	connection	between	the	on-premises	data	center	and	AWS.	

Activities:	

Work	with	AWS	and	a	Direct	Connect	partner	to	provision	a	Direct	Connect	connection.	ConUigure	the	
Direct	Connect	link	at	the	AWS	Management	Console,	setting	up	a	Virtual	Interface	(VIF)	for	private	
connectivity	to	AWS	services.	Ensure	proper	routing	and	BGP	conUigurations	are	in	place	for	reliable,	
secure	communication.	

Task	3:	ConUigure	a	Site-to-Site	VPN	as	a	Failover	

Objective:		Implement	a	Site-to-Site	VPN	to	serve	as	a	redundant,	secure	connection	if	the	Direct	
Connect	link	fails.	

Activities:		

Utilize	the	AWS	Site-to-Site	VPN	service	to	establish	VPN	tunnels	between	the	on-premises	data	center	
and	the	VPC.	ConUigure	VPN	settings,	including	the	customer	gateway	on	the	on-premises	side	and	the	
virtual	private	gateway	on	the	AWS	side.	Test	VPN	failover	to	ensure	automatic	switching	in	case	of	
Direct	Connect	downtime.	

Task	4:	Implement	Hybrid	Cloud	Networking	

Objective:		ConUigure	networking	to	integrate	on-premises	and	AWS	resources	seamlessly.	

Activities:		

Set	up	a	Virtual	Private	Cloud	(VPC)	for	AWS	resources	that	need	to	communicate	with	on-premises	
systems.	Design	and	implement	VPC	subnets,	route	tables,	and	NACLs	to	align	with	the	hybrid	
architecture	requirements.	Establish	private	DNS	to	facilitate	name	resolution	between	on-premises	
and	cloud	environments.	

Task	5:	Security	and	Compliance	

Objective:		Ensure	the	hybrid	cloud	solution	adheres	to	security	best	practices	and	compliance	
standards.	

Activities:		

Implement	security	groups	and	IAM	policies	to	control	access	to	AWS	resources.Use	AWS	Shield	and	
AWS	WAF	to	protect	cloud	resources	from	DDoS	attacks	and	web	exploits.	Conduct	a	security	
assessment	to	identify	potential	vulnerabilities	and	apply	necessary	patches	or	conUiguration	changes.	

Task	6:	Monitoring	and	Optimization	

Objective:		Set	up	monitoring	for	the	hybrid	cloud	environment	and	optimize	for	performance	and	cost.	

Activities:		

Utilize	Amazon	CloudWatch	to	monitor	network	and	application	performance	across	on-premises	and	
AWS.	Analyze	trafUic	patterns	to	optimize	bandwidth	usage	and	reduce	costs,	considering	options	like	
AWS	Direct	Connect	Gateway	for	multiple	VPC	connectivity.	Prepare	a	report	on	the	hybrid	cloud	
setup's	performance,	offering	recommendations	for	future	scalability.	

Th
eO
psK
art



Deliverables:	

A	comprehensive	design	document	outlining	the	hybrid	cloud	architecture.	ConUiguration	Uiles	and	
scripts	used	in	setting	up	Direct	Connect,	VPN,	and	VPC	components.	A	security	assessment	report	
with	Uindings	and	remediation	steps.	A	performance	and	cost	optimization	analysis	with	actionable	
insights.	

===============================================================================	

Storage	Project:	Serverless	Migration	and	Data	Lake	Setup	on	Amazon	S3	
Project	Overview	:	

A	company	is	looking	to	modernize	its	on-premises	application	by	migrating	it	to	a	serverless	
architecture	on	AWS,	aiming	to	enhance	scalability,	reduce	costs,	and	improve	data	analytics	
capabilities.	As	part	of	this	transition,	the	company	also	plans	to	establish	a	data	lake	on	Amazon	S3	to	
consolidate	various	data	sources	for	advanced	analytics.	

Objective:	

Migrate	the	existing	on-premises	application	to	a	serverless	framework	using	AWS	services,	with	a	
focus	on	utilizing	Amazon	S3	for	storage	and	analytics.	Set	up	a	comprehensive	data	lake	strategy	that	
includes	data	ingestion,	storage,	and	analysis.	

Task	1:	Assess	and	Plan	the	Serverless	Migration	

Objective:	Evaluate	the	on-premises	application	components	and	data	to	plan	their	migration	to	AWS	
serverless	architecture.	

Activities:	

Analyze	the	application’s	architecture,	identifying	components	suitable	for	serverless	deployment	(e.g.,	
web	frontends,	APIs).	Design	a	migration	strategy	that	outlines	the	transition	to	AWS	Lambda,	Amazon	
API	Gateway,	and	other	serverless	services.	Develop	a	data	migration	plan	to	move	existing	data	to	
Amazon	S3	securely.	

Task	2:	Implement	Serverless	Application	Components	

Objective:	Migrate	application	components	to	AWS	serverless	services,	ensuring	scalability	and	
performance.	

Activities:	

ConUigure	Amazon	S3	buckets	with	proper	organization,	naming	conventions,	and	security	policies	for	
the	data	lake.	Implement	data	ingestion	pipelines	using	AWS	Glue	or	AWS	Data	Pipeline	for	batch	and	
real-time	data.	Set	up	data	cataloging	with	AWS	Glue	Catalog	to	manage	metadata	and	facilitate	search	
and	discovery.	

Th
eO
psK
art



Task	3:	Establish	the	Data	Lake	on	Amazon	S3	

Objective:		Create	a	data	lake	on	Amazon	S3	to	aggregate,	store,	and	analyze	data	from	various	sources.	

Activities:		

ConUigure	Amazon	S3	buckets	with	proper	organization,	naming	conventions,	and	security	policies	for	
the	data	lake.	Implement	data	ingestion	pipelines	using	AWS	Glue	or	AWS	Data	Pipeline	for	batch	and	
real-time	data.	Set	up	data	cataloging	with	AWS	Glue	Catalog	to	manage	metadata	and	facilitate	search	
and	discovery.	

Task	4:	Data	Processing	and	Analytics	

Objective:		Enable	advanced	analytics	on	the	data	lake	using	AWS	analytics	services.	

Activities:		

Use	AWS	Glue	for	ETL	operations	to	prepare	data	for	analytics.	Implement	analytics	solutions	using	
Amazon	Athena	for	querying	and	Amazon	Redshift	for	complex	analysis.	Explore	integrating	Amazon	
SageMaker	for	machine	learning	models	to	derive	insights	from	the	data	lake.	

Task	5:	Security	and	Compliance	

Objective:		Ensure	the	serverless	architecture	and	data	lake	comply	with	security	standards	and	
regulations.	

Activities:		

Implement	encryption	at	rest	using	Amazon	S3	server-side	encryption	and	AWS	KMS.	DeUine	IAM	roles	
and	policies	for	controlled	access	to	the	serverless	components	and	data	lake.	Conduct	regular	security	
audits	to	ensure	compliance	with	data	protection	regulations.	

Task	6:	Monitoring,	Optimization,	and	Cost	Management	

Objective:		Set	up	monitoring	for	the	serverless	components	and	data	lake,	optimize	performance,	and	
manage	costs.	

Activities:		

Utilize	Amazon	CloudWatch	for	monitoring	application	performance	and	logging.	Employ	AWS	Lambda	
cost	optimization	techniques,	such	as	adjusting	memory	allocation	and	optimizing	execution	time.	
Analyze	Amazon	S3	usage	and	apply	lifecycle	policies	to	archive	or	delete	old	data	to	reduce	costs.	

Deliverables:	

A	detailed	migration	report	outlining	the	transition	to	a	serverless	architecture,	including	architectural	
diagrams.	A	comprehensive	data	lake	strategy	document,	covering	data	ingestion,	storage,	processing,	
and	analytics.	Security	and	compliance	assessment	report,	including	encryption	and	access	control	
implementations.	Performance	and	cost	management	analysis	with	recommendations	for	further	
optimizations.	

Th
eO
psK
art



High	Availability	Project:	Multi-Region	Web	Application	Deployment	with	
Automated	Failover	
Project	Overview	:	

A	content	delivery	company	wants	to	ensure	their	web	application	remains	available	and	responsive	to	
users	worldwide,	even	in	the	event	of	a	regional	AWS	service	disruption.	The	project	involves	
deploying	the	application	across	multiple	AWS	regions	and	implementing	automated	failover	
mechanisms.	

Objective:	

Create	a	resilient,	multi-region	deployment	of	a	web	application	on	AWS,	incorporating	Route	53	for	
DNS	management	and	automated	failover	to	enhance	availability	and	disaster	recovery	capabilities.	

Task	1:		Design	Multi-Region	Architecture	

Objective:	Architect	a	deployment	strategy	that	spans	at	least	two	AWS	regions	to	support	high	
availability.	

Activities:	

Identify	suitable	AWS	regions	based	on	the	geographic	distribution	of	the	application's	user	base.	
Design	an	architecture	that	replicates	the	application's	environment	across	these	regions,	including	
web	servers,	databases,	and	other	critical	components.	

Task	2:	Implement	Application	Deployment	

Objective:	Deploy	the	application	in	multiple	regions,	ensuring	consistency	and	synchronization	
between	regions.	

Activities:	

Use	AWS	CloudFormation	or	the	AWS	CDK	to	deUine	and	deploy	infrastructure	as	code,	ensuring	
environments	are	identical	across	regions.	Set	up	Amazon	RDS	Multi-AZ	deployments	with	read	
replicas	in	different	regions	for	database	high	availability	and	cross-region	read	scalability.	ConUigure	
Amazon	S3	Cross-Region	Replication	for	shared	assets	and	user	data.	

Task	3:	ConUigure	Automated	Failover	with	Route	53	

Objective:		Implement	DNS-level	failover	using	Amazon	Route	53	to	automatically	reroute	trafUic	in	
case	of	a	regional	outage.	

Activities:		

Set	up	health	checks	in	Route	53	to	monitor	the	health	of	the	application	endpoints	in	each	region.	
ConUigure	DNS	failover	policies	in	Route	53,	ensuring	automatic	trafUic	rerouting	to	a	healthy	region	if	
the	primary	region	becomes	unavailable.	Test	failover	mechanisms	to	validate	the	setup.	

Task	4:	Monitoring	and	Alerts	

Objective:		Establish	comprehensive	monitoring	across	regions	to	detect	and	respond	to	issues	quickly.	

Th
eO
psK
art



Activities:		

Implement	Amazon	CloudWatch	alarms	and	dashboards	for	real-time	monitoring	of	application	health	
and	performance	metrics	across	all	regions.	Set	up	Amazon	SNS	notiUications	to	alert	administrators	of	
failover	events	and	other	critical	metrics	that	indicate	potential	issues.	

Deliverables:	

A	detailed	design	document	outlining	the	multi-region	architecture	and	deployment	strategy.	
Infrastructure	as	code	templates	for	deploying	the	multi-region	environment.	ConUiguration	details	
and	testing	results	for	Route	53	automated	failover.	A	monitoring	and	alerting	strategy	document,	
including	CloudWatch	dashboard	conUigurations	and	SNS	notiUication	setups.	

===============================================================================		

Serverless	Architecture	Project:	Serverless	Backend	for	Web	Application	
Project	Overview	:	

An	online	retail	company	seeks	to	modernize	their	e-commerce	platform	by	moving	to	a	serverless	
architecture	for	better	scalability	and	cost	efUiciency.	The	focus	is	on	developing	a	serverless	backend	
for	their	web	application	using	AWS	services.	

Objective:	

Build	a	serverless	backend	for	an	ecommerce	web	application,	leveraging	AWS	Lambda,	API	Gateway,	
and	DynamoDB	to	create	scalable,	efUicient,	and	cost-effective	solutions.	

Task	1:		Design	Serverless	Backend	Architecture	

Objective:	Create	a	scalable	and	maintainable	serverless	architecture	suitable	for	an	ecommerce	
platform.	

Activities:	

DeUine	the	application's	core	functionalities	(e.g.,	user	authentication,	product	catalog	management,	
order	processing)	to	be	implemented	as	microservices.	Design	the	serverless	architecture,	detailing	the	
use	of	AWS	Lambda	functions,	API	Gateway	for	RESTful	endpoints,	and	DynamoDB	for	data	storage.	

Task	2:	Implement	RESTful	APIs	with	API	Gateway	and	Lambda	

Objective:	Develop	and	deploy	the	serverless	functions	that	power	the	application's	backend	APIs.	

Activities:	

Implement	Lambda	functions	for	handling	API	requests	such	as	user	registration,	product	browsing,	
and	order	placement.	ConUigure	API	Gateway	to	expose	and	manage	these	Lambda	functions	as	
RESTful	endpoints.	Secure	API	endpoints	using	API	Gateway	authorizers	and	AWS	IAM	roles.	

Task	3:	Set	Up	Data	Storage	with	DynamoDB	

Objective:		Design	and	conUigure	DynamoDB	tables	to	store	application	data,	ensuring	scalability	and	
performance.	

Th
eO
psK
art



Activities:		

DeUine	DynamoDB	tables	and	indexes	for	efUicient	data	access	patterns,	considering	the	application's	
requirements	for	user	data,	product	information,	and	orders.	Implement	data	access	layer	within	
Lambda	functions	to	interact	with	DynamoDB.	Use	DynamoDB	Streams	to	trigger	other	Lambda	
functions	for	asynchronous	processing	(e.g.,	inventory	updates,	recommendations).	

Task	4:	Integration	and	Testing	

Objective:		Integrate	the	serverless	backend	with	the	frontend	application,	ensuring	seamless	
communication	and	functionality.	

Activities:		

Develop	integration	tests	to	validate	the	interaction	between	the	frontend,	the	serverless	backend,	and	
the	database.	Perform	end-to-end	testing	of	the	ecommerce	platform	to	ensure	that	all	components	
work	together	as	expected.	Optimize	performance	based	on	testing	feedback,	adjusting	Lambda	
memory	sizes	and	DynamoDB	throughput	settings	as	necessary.	

Deliverables:	

An	architecture	diagram	and	documentation	detailing	the	serverless	backend	design.	Source	code	for	
all	AWS	Lambda	functions	and	the	API	Gateway	conUiguration.	DynamoDB	table	design	and	
implementation	details.	A	comprehensive	testing	report,	including	integration	and	performance	
testing	results.	

===============================================================================	

Database	Project:	Amazon	RDS	Performance	Optimization	and	Migration	to	
Aurora	
Project	Overview	:	

A	Uinancial	services	company	experiences	performance	bottlenecks	with	their	existing	Amazon	RDS	
instance	under	high	transaction	loads.	They	aim	to	optimize	the	RDS	instance	for	enhanced	
performance	and	migrate	it	to	Amazon	Aurora	to	leverage	Aurora's	high	performance	and	scalability,	
all	while	ensuring	minimal	downtime	during	the	migration	process.	

Objective:	

Enhance	the	performance	of	an	existing	Amazon	RDS	database	and	seamlessly	migrate	it	to	Amazon	
Aurora,	taking	advantage	of	Aurora's	advanced	features	for	scalability	and	reliability	without	
signiUicant	downtime.	

Task	1:		Assess	and	Optimize	the	RDS	Instance	

Objective:	Identify	performance	issues	and	optimize	the	RDS	instance	settings	for	improved	efUiciency.	

Activities:	

Perform	a	comprehensive	analysis	of	the	current	RDS	instance	to	identify	performance	bottlenecks,	
using	Amazon	CloudWatch	and	RDS	Performance	Insights.	Optimize	parameters	in	the	RDS	instance	
parameter	group	for	better	performance,	including	memory	allocation,	query	execution	plans,	and	
connection	settings.	Implement	indexing	strategies	and	query	optimizations	to	reduce	latency	and	
improve	throughput.	

Th
eO
psK
art



Task	2:	Prepare	for	Migration	to	Amazon	Aurora	

Objective:	Prepare	the	environment	and	the	data	for	a	smooth	migration	from	Amazon	RDS	to	Amazon	
Aurora.	

Activities:	

Evaluate	the	compatibility	of	the	existing	database	schema	and	data	with	Amazon	Aurora,	making	
necessary	adjustments.	Create	an	Amazon	Aurora	cluster	with	an	instance	size	and	conUiguration	that	
meets	or	exceeds	the	current	RDS	setup.	Enable	binary	logging	on	the	RDS	instance	to	capture	
transaction	changes	during	the	migration	process.	

Task	3:	Migrate	to	Amazon	Aurora	with	Minimal	Downtime	

Objective:		Seamlessly	migrate	the	optimized	RDS	database	to	Amazon	Aurora	with	minimal	impact	on	
application	availability.	

Activities:		

Use	the	AWS	Database	Migration	Service	(DMS)	to	replicate	the	data	from	the	RDS	instance	to	the	
Aurora	cluster,	ensuring	ongoing	changes	are	captured.	Monitor	the	replication	process,	addressing	
any	errors	or	lags	to	keep	the	Aurora	cluster	in	sync	with	the	RDS	instance.	Perform	a	cut-over	to	the	
Aurora	cluster	during	a	scheduled	maintenance	window,	updating	application	connection	strings	to	
point	to	the	new	Aurora	endpoint.	

Task	4:	Validate	and	Optimize	the	Aurora	Deployment	

Objective:		Ensure	the	Aurora	database	functions	correctly	post-migration	and	is	fully	optimized	for	the	
company's	workloads.	

Activities:		

Conduct	thorough	testing	to	validate	data	integrity,	application	functionality,	and	performance	on	the	
Aurora	cluster.	Leverage	Aurora-speciUic	features	such	as	Aurora	Global	Databases	for	cross-region	
disaster	recovery,	if	applicable.	Fine-tune	Aurora	performance	settings	based	on	observed	workload	
patterns,	utilizing	Aurora's	Performance	Insights	for	guidance.	

Task	5:	Implement	Monitoring	and	Failover	Strategies	

Objective:		Set	up	comprehensive	monitoring	for	the	Aurora	cluster	and	plan	for	automated	failover	to	
enhance	availability.	

Activities:		

ConUigure	Amazon	CloudWatch	alarms	for	critical	metrics	related	to	Aurora	performance	and	
availability.	Test	Aurora's	automatic	failover	feature	by	simulating	failure	scenarios,	ensuring	the	
application	seamlessly	connects	to	a	healthy	Aurora	replica	without	manual	intervention.	Document	
the	failover	process	and	any	manual	steps	required	for	recovery.	

Deliverables:	

A	report	detailing	the	performance	optimization	steps	taken	for	the	original	RDS	instance	and	the	
rationale	behind	each	change.	Migration	plan	documentation,	including	schema	modiUications,	
compatibility	checks,	and	the	migration	strategy	used.	Testing	and	validation	reports	for	the	Aurora	
deployment,	highlighting	performance	improvements	and	any	adjustments	made	post-migration.	A	
failover	and	recovery	strategy	guide	for	the	Aurora	cluster,	including	monitoring	setup	and	alerting	
policies.	

Th
eO
psK
art



DevOps	Project:	Microservices	Deployment	on	Amazon	EKS	with	CI/CD	
Pipeline	
Project	Overview	:	

A	software	development	company	is	transitioning	to	a	microservices	architecture	for	its	Ulagship	
application	to	improve	scalability	and	accelerate	feature	deployment.	The	project	involves	deploying	
the	microservices	application	on	Amazon	Elastic	Kubernetes	Service	(EKS)	and	automating	the	
deployment	process	with	a	Continuous	Integration/Continuous	Deployment	(CI/CD)	pipeline	using	
AWS	CodePipeline	and	CodeBuild.	

Objective:	

Implement	a	robust	DevOps	workUlow	that	automates	the	build,	test,	and	deployment	of	a	
microservices-based	application	on	Amazon	EKS,	leveraging	AWS	CodePipeline	and	CodeBuild	for	CI/
CD.	

Task	1:		Set	Up	Amazon	EKS	for	Microservices	Deployment	

Objective:	ConUigure	Amazon	EKS	to	host	the	microservices	application,	ensuring	it	is	secure,	scalable,	
and	highly	available.	

Activities:	

Create	an	EKS	cluster	with	worker	nodes	spread	across	multiple	availability	zones	to	ensure	high	
availability.	DeUine	Kubernetes	namespaces	for	organizing	microservices	components	based	on	their	
operational	requirements	and	environments	(e.g.,	development,	staging,	production).	Implement	
network	policies	and	IAM	roles	for	Kubernetes	service	accounts	to	enforce	security	at	the	
microservices	level.	

Task	2:	Containerize	Microservices	and	Manage	Repositories	

Objective:	Containerize	each	microservice	and	push	the	Docker	images	to	Amazon	Elastic	Container	
Registry	(ECR).		

Activities:	

Write	DockerUiles	for	each	microservice,	ensuring	they	are	optimized	for	size,	security,	and	build	speed.	
Build	Docker	images	locally	and	push	them	to	ECR	repositories	created	for	each	microservice.	Set	up	
ECR	image	scanning	to	automatically	scan	images	for	vulnerabilities	on	push.	

Task	3:	Create	a	CI/CD	Pipeline	with	AWS	CodePipeline	and	CodeBuild	

Objective:		Automate	the	build,	test,	and	deployment	process	for	the	microservices	application	using	
AWS	CodePipeline	and	CodeBuild.	

Activities:		DeUine	a	source	stage	in	CodePipeline	to	trigger	the	pipeline	on	code	changes	in	a	Git	
repository	(e.g.,	AWS	CodeCommit,	GitHub).	Set	up	CodeBuild	projects	to	build	Docker	images	from	the	
source	code,	run	unit	tests,	and	push	successful	builds	to	ECR.	ConUigure	a	deployment	stage	in	
CodePipeline	to	automatically	deploy	the	Docker	images	to	EKS	using	Kubernetes	manifests	or	Helm	
charts.	

Th
eO
psK
art



Task	4:	Implement	Automated	Testing	and	Rollback	Mechanisms	

Objective:		Ensure	code	quality	and	reliability	by	integrating	automated	testing	in	the	CI/CD	pipeline	
and	implementing	rollback	mechanisms	for	deployment	failures.	

Activities:		

Integrate	automated	testing	frameworks	(e.g.,	Selenium	for	UI	testing,	JUnit	for	unit	testing)	in	the	
build	stage	of	the	pipeline.	Use	CodePipeline's	approval	actions	and	manual	gates	to	review	and	
approve	deployments	to	production	environments.	Implement	Kubernetes	deployment	strategies	(e.g.,	
blue-green	deployments,	canary	releases)	to	minimize	downtime	and	facilitate	rollbacks	in	case	of	
errors.	

Task	5:	Monitoring,	Logging,	and	Performance	Tuning	

Objective:		Set	up	monitoring,	logging,	and	alerting	for	the	microservices	application	and	the	CI/CD	
pipeline	to	maintain	operational	excellence.	

Activities:		

ConUigure	Amazon	CloudWatch	for	monitoring	the	EKS	cluster,	microservices	performance,	and	logging	
container	logs.	Set	up	CloudWatch	alarms	and	SNS	notiUications	to	alert	the	DevOps	team	about	critical	
issues,	such	as	deployment	failures,	resource	utilization	spikes,	or	security	vulnerabilities.	Analyze	
performance	metrics	to	identify	bottlenecks	and	optimize	the	microservices	conUiguration	and	
resource	allocation	for	improved	efUiciency.	

Deliverables:	

An	Amazon	EKS	cluster	conUigured	for	microservices	deployment,	complete	with	security	and	network	
conUigurations.	DockerUiles	and	ECR	repositories	for	each	microservice,	along	with	a	process	for	
automated	image	scanning.		

A	fully	automated	CI/CD	pipeline	in	AWS	CodePipeline	and	CodeBuild,	documented	with	stages,	
actions,	and	integration	points.	Automated	testing	and	rollback	strategy	documentation,	including	test	
frameworks	used	and	deployment	strategies	implemented.		

Monitoring	and	alerting	setup	documentation,	including	CloudWatch	dashboards,	alarms,	and	
notiUication	workUlows.	This	project	challenges	students	to	apply	DevOps	principles	to	deploy	a	
microservices	architecture	on	AWS,	automating	the	software	development	lifecycle	with	CI/CD	best	
practices,	and	ensuring	operational	monitoring	and	security.	

Th
eO
psK
art



Monitoring	and	Logging	Project:	Centralized	Logging	with	Amazon	
Elasticsearch	Service	and	Kibana	
Project	Overview	:	

An	online	retail	company	is	looking	to	improve	its	operational	efUiciency	and	troubleshooting	
capabilities	by	implementing	a	centralized	logging	solution.	They	aim	to	aggregate	logs	from	various	
applications	and	AWS	services	into	a	single	repository	for	analysis	and	visualization.	The	project	
involves	using	Amazon	Elasticsearch	Service	(Amazon	ES)	for	log	storage	and	analysis,	and	Kibana	for	
data	visualization.	

Objective:	

Establish	a	scalable	and	centralized	logging	solution	using	Amazon	Elasticsearch	Service,	facilitating	
log	aggregation,	search,	and	analysis.	Utilize	Kibana	for	creating	insightful	visualizations	and	
dashboards	for	real-time	monitoring.		

Task	1:		Design	the	Centralized	Logging	Architecture	

Objective:	Architect	a	logging	solution	that	collects,	stores,	and	analyzes	logs	from	different	sources	
within	the	AWS	environment.	

Activities:	

Identify	the	sources	of	logs,	including	application	logs,	AWS	CloudTrail	logs,	Amazon	VPC	Flow	Logs,	
and	logs	from	various	AWS	services.	Plan	the	log	ingestion	pipeline	using	AWS	services	such	as	
Amazon	CloudWatch	Logs,	AWS	Lambda,	and	Logstash	(for	non-AWS	sources)	to	route	logs	to	Amazon	
ES.	

Task	2:	Set	Up	Amazon	Elasticsearch	Service	

Objective:	Deploy	and	conUigure	an	Amazon	Elasticsearch	Service	cluster	to	serve	as	the	centralized	
logging	platform.	

Activities:	

Create	an	Amazon	ES	domain,	conUiguring	the	cluster	size,	instance	types,	and	storage	options	based	
on	anticipated	log	volume	and	retention	requirements.	Implement	access	policies	to	secure	the	
Amazon	ES	domain,	allowing	authorized	access	from	log	sources	and	Kibana.	ConUigure	Amazon	ES	
indices	and	index	templates	to	efUiciently	organize	logs	by	source	and	type.	

Task	3:	Log	Ingestion	and	Aggregation	

Objective:		Implement	log	ingestion	mechanisms	to	collect	logs	from	various	sources	and	aggregate	
them	into	the	Amazon	ES	cluster.	

Activities:		Use	AWS	Lambda	functions	to	process	and	transform	logs	from	CloudWatch	Logs	and	other	
AWS	services,	sending	them	to	Amazon	ES.	ConUigure	Logstash	or	AWS	Data	Firehose	(for	supported	
log	sources)	to	ingest	logs	into	Amazon	ES,	applying	necessary	transformations	and	enrichments.	
Ensure	reliable	and	secure	log	transmission,	implementing	retry	mechanisms	and	encryption	in	
transit.	

Th
eO
psK
art



Task	4:	Visualization	with	Kibana	

Objective:		Utilize	Kibana	to	create	visualizations	and	dashboards	that	provide	insights	into	application	
and	infrastructure	performance	and	issues.	

Activities:		

Set	up	Kibana	with	the	Amazon	ES	domain,	conUiguring	access	controls	to	ensure	secure	dashboard	
access.	Create	Kibana	visualizations	for	key	metrics	such	as	error	rates,	response	times,	and	resource	
utilization,	using	logs	aggregated	in	Amazon	ES.	Build	comprehensive	dashboards	that	aggregate	
multiple	visualizations,	providing	a	holistic	view	of	system	health	and	performance	trends.	

Task	5:	Monitoring	and	Alerts	

Objective:		Leverage	the	centralized	logging	solution	for	operational	monitoring	and	setting	up	alerts	
for	anomaly	detection.	

Activities:		

Use	Amazon	ES's	built-in	alerting	features	or	integrate	with	Amazon	CloudWatch	for	monitoring	log	
data	for	speciUic	patterns	or	thresholds.	ConUigure	alerts	to	notify	the	operations	team	via	Amazon	SNS	
or	email	for	critical	issues	identiUied	through	log	analysis.	Document	the	process	for	responding	to	
alerts,	including	initial	diagnosis,	escalation	procedures,	and	resolution	steps.	

Deliverables:	

A	documented	architecture	design	for	the	centralized	logging	solution,	including	data	Ulow	diagrams	
and	component	conUigurations.	Amazon	Elasticsearch	Service	domain	setup	and	conUiguration	Uiles,	
along	with	access	policies	and	index	management	strategies.	A	collection	of	Kibana	dashboards	and	
visualizations	tailored	to	the	company's	operational	monitoring	needs.	

An	alerting	and	notiUication	setup	guide,	detailing	the	conUiguration	of	alerts	based	on	log	data	and	
integration	with	notiUication	services.	A	best	practices	guide	for	log	management,	including	retention	
policies,	data	privacy	considerations,	and	optimization	tips	for	cost	management.	

This	project	equips	students	with	the	skills	to	implement	an	advanced	centralized	logging	system	using	
AWS	technologies,	enhancing	operational	visibility	and	proactive	issue	resolution	capabilities	in	a	
cloud	environment.	 Th

eO
psK
art



Cost	Management	Project:	AWS	Cost	Optimization	with	Cost	Explorer	and	
Trusted	Advisor	
Project	Overview	:	

A	growing	tech	startup,	utilizing	a	wide	range	of	AWS	services,	has	observed	a	signiUicant	increase	in	
their	AWS	bills	over	the	past	few	months.	The	company	aims	to	optimize	its	cloud	spending	without	
compromising	on	performance	or	scalability.	The	project	involves	analyzing	the	AWS	environment's	
current	cost	structure	using	AWS	Cost	Explorer	and	identifying	optimization	opportunities	with	the	
help	of	AWS	Trusted	Advisor.	

Objective:	

Conduct	a	comprehensive	cost	analysis	of	the	startup's	AWS	usage,	leveraging	AWS	Cost	Explorer	and	
Trusted	Advisor	to	uncover	cost-saving	opportunities	and	implement	best	practices	for	cloud	cost	
management.		

Task	1:		AWS	Cost	Analysis	with	Cost	Explorer	

Objective:	Utilize	AWS	Cost	Explorer	to	analyze	the	company's	AWS	spending	patterns	and	identify	
high-cost	services	and	resources.	

Activities:	

Enable	and	conUigure	AWS	Cost	Explorer	to	access	detailed	reports	on	the	company's	AWS	spending	
and	usage.	Analyze	spending	trends	over	time,	identifying	services	with	the	highest	costs	and	any	
unusual	spikes	in	spending.	Break	down	costs	by	service,	region,	and	resource	tags	to	pinpoint	areas	
where	cost	optimizations	can	be	made.	

Task	2:	Recommendations	with	AWS	Trusted	Advisor	

Objective:	Use	AWS	Trusted	Advisor	to	identify	speciUic	cost	optimization	opportunities	and	best	
practices	not	currently	being	followed.	

Activities:	

Enable	Trusted	Advisor	and	review	the	Cost	Optimization	checks,	focusing	on	underutilized	resources	
such	as	EC2	instances,	EBS	volumes,	and	RDS	instances.	Analyze	Trusted	Advisor	recommendations	for	
Reserved	Instances	and	Savings	Plans	based	on	the	company's	usage	patterns.	Summarize	Uindings	in	
key	areas	where	the	company	can	reduce	costs,	such	as	deleting	unused	resources,	resizing	
underutilized	resources,	and	purchasing	Reserved	Instances	or	Savings	Plans.	

Task	3:	Implement	Cost	Optimization	Strategies	

Objective:		Execute	a	series	of	cost	optimization	measures	based	on	the	analysis	and	recommendations	
from	Cost	Explorer	and	Trusted	Advisor.	

Activities:		Implement	tagging	strategies	to	improve	visibility	into	costs	and	usage	across	different	
projects,	departments,	and	environments.	Resize,	consolidate,	or	shut	down	underutilized	resources	as	
identiUied	in	the	analysis	phase.	Purchase	Reserved	Instances	or	commit	to	Savings	Plans	for	
consistently	used	services	to	take	advantage	of	discounted	rates.	

Th
eO
psK
art



Task	4:	Monitor	and	Adjust	Cost-Saving	Measures	

Objective:		Establish	ongoing	monitoring	to	track	the	effectiveness	of	implemented	cost-saving	
measures	and	adjust	strategies	as	needed.	

Activities:		

Set	up	budget	alerts	in	AWS	Budgets	to	monitor	monthly	spending	against	set	thresholds,	ensuring	
early	detection	of	overruns.	Regularly	review	AWS	Cost	Explorer	and	Trusted	Advisor	reports	to	
monitor	the	impact	of	implemented	cost-saving	measures	and	identify	new	optimization	
opportunities.	Conduct	quarterly	reviews	to	adjust	the	cost	optimization	strategy	based	on	changing	
usage	patterns	and	new	AWS	pricing	models	or	services.	

Deliverables:	

A	comprehensive	cost	analysis	report	detailing	the	Uindings	from	AWS	Cost	Explorer,	including	
spending	trends,	high-cost	services,	and	anomalies.	

A	list	of	cost	optimization	recommendations	derived	from	AWS	Trusted	Advisor,	categorized	by	
potential	impact	and	ease	of	implementation.	Documentation	of	implemented	cost	optimization	
strategies,	including	details	of	resized	or	terminated	resources,	Reserved	Instances,	and	Savings	Plans	
purchases.	A	cost	management	best	practices	guide,	including	instructions	for	setting	up	budget	alerts,	
resource	tagging,	and	conducting	regular	cost	reviews.	

This	project	provides	students	with	practical	experience	in	cloud	cost	management,	teaching	them	
how	to	analyze	AWS	spending,	identify	cost-saving	opportunities,	and	implement	effective	cost	
optimization	strategies.

Th
eO
psK
art


	Advanced AWS Course Structure for Intermediate Students

