
Master Course on Cloud-Na0ve DevOps with Mul0ple Projects 

Module 1: Advanced Infrastructure as Code (IaC) 
Overview 

This	module	takes	a	comprehensive	dive	into	Infrastructure	as	Code	(IaC)	practices,	focusing	on	
Terraform	and	AWS	CloudFormation	as	pivotal	tools	for	managing	complex	cloud	infrastructures.	
Students	will	explore	the	nuances	of	creating	reproducible	and	scalable	cloud	environments,	
emphasizing	disaster	recovery,	high	availability,	and	data	replication	strategies.	This	deep	dive	equips	
students	with	the	expertise	to	design	and	manage	cloud	infrastructure	efFiciently,	with	a	strong	
emphasis	on	automation	and	best	practices	in	cloud	architecture.	

Topics: 
• Foundations	of	IaC:	Introduction	to	the	principles	of	IaC,	comparing	imperative	vs.	declarative	

approaches,	and	understanding	the	signiFicance	of	idempotency	in	infrastructure	management.	

• Mastering	Terraform:	In-depth	exploration	of	Terraform,	including	state	management,	modular	
design	patterns,	and	working	with	Terraform	Cloud	for	team	collaboration	and	governance.	

• Advanced	CloudFormation:	Techniques	for	leveraging	AWS	CloudFormation	to	its	full	potential,	
focusing	on	nested	stacks,	custom	resources,	and	integrating	CloudFormation	with	AWS	Service	
Catalog	for	organizational	governance.	

• Disaster	Recovery	and	High	Availability:	Strategies	for	designing	disaster	recovery	plans	using	IaC,	
including	cross-region	backups,	multi-region	deployments,	and	automating	failover	processes.	

• Data	Replication	Techniques:	Implementing	data	replication	and	continuity	strategies	across	cloud	
environments	to	ensure	data	integrity	and	availability.	

Module 2: Con0nuous Integra0on and Con0nuous Deployment (CI/CD) 
Overview 

This	module	explores	the	intricacies	of	setting	up	advanced	CI/CD	pipelines	using	Jenkins	and	Harness,	
two	powerful	tools	that	enable	automation,	comprehensive	testing,	and	strategic	deployments	in	
software	development	workFlows.	Focusing	on	microservices	architecture,	which	is	prevalent	in	
modern	FinTech	applications,	this	module	guides	students	through	the	creation	of	pipelines	that	
incorporate	automated	testing,	security	scanning,	and	deployment	strategies	such	as	blue/green	
deployments	to	minimize	disruptions	during	updates.	

Topics: 
• CI/CD	Fundamentals	with	Jenkins	and	Harness:	Introduction	to	Jenkins	for	continuous	integration	

and	Harness	for	continuous	deployment,	including	setup,	conFiguration,	and	integration	between	
both	tools.	

• Automated	Testing	in	CI/CD	Pipelines:	Strategies	for	integrating	various	types	of	automated	tests	
(unit,	integration,	end-to-end)	within	pipelines	to	ensure	code	quality	and	reliability.	

• Security	Scanning:	Implementing	automated	security	scanning	within	CI/CD	workFlows	to	identify	
and	remediate	vulnerabilities	early	in	the	development	cycle.	

Th
eO
psK
art



• Deployment	Strategies	for	Microservices:	Exploring	deployment	techniques,	with	an	emphasis	on	
blue/green	deployments,	to	achieve	zero	downtime	during	application	updates	in	a	microservices	
architecture.	

• Monitoring	and	Feedback	for	CI/CD	Pipelines:	Leveraging	monitoring	tools	to	gather	insights	from	
deployment	processes	and	creating	feedback	loops	to	continuously	improve	pipeline	efFiciency	and	
reliability.	

Module 3: Containeriza0on and Orchestra0on 

Topics: 
• Introduction	to	Containerization	with	Docker:	Understanding	the	concept	of	containerization,	

creating	Docker	images,	container	management,	and	Docker	Compose	for	multi-container	
applications.	

• Kubernetes	Essentials:	A	comprehensive	overview	of	Kubernetes,	including	its	architecture,	core	
components	(Pods,	Deployments,	Services,	etc.),	and	the	kubectl	command-line	tool.	

• Application	Deployment	with	Kubernetes:	Practical	instructions	on	deploying	applications	on	
Kubernetes,	focusing	on	manifest	Files,	deployment	strategies,	and	health	checks.	

• Scaling	and	Load	Balancing:	Exploring	Kubernetes'	capabilities	for	auto-scaling	applications	based	
on	trafFic	or	other	metrics,	and	implementing	load	balancing	to	distribute	trafFic	evenly	across	
multiple	instances.	

• Self-Healing	Applications:	Leveraging	Kubernetes'	self-healing	mechanisms	to	automatically	
replace	failed	containers,	ensuring	high	availability	and	resilience	of	applications.	

• Advanced	Kubernetes	Features:	Introduction	to	advanced	topics	such	as	StatefulSets	for	stateful	
applications,	managing	secrets	and	conFigurations	with	ConFigMaps	and	Secrets,	and	securing	
cluster	access	with	Role-Based	Access	Control	(RBAC).	

Module 4: Monitoring, Logging, and Observability 

Topics: 
• Introduction	to	Monitoring	and	Logging:	Key	concepts	in	monitoring,	logging,	and	observability.	

Understanding	the	role	of	each	in	maintaining	healthy	and	performant	applications	and	
infrastructure.	

• Getting	Started	with	Prometheus	and	Grafana:	Setting	up	Prometheus	for	metric	collection	and	
Grafana	for	data	visualization.	Constructing	dashboards	that	offer	actionable	insights	into	
application	performance	and	system	health.	

• Leveraging	the	ELK	Stack	for	Logging:	Implementing	the	ELK	Stack	for	centralized	logging.	
Techniques	for	log	aggregation,	processing,	and	visualization	with	Elasticsearch,	Logstash,	and	
Kibana.	

• Alerting	and	Incident	Management:	ConFiguring	alerting	rules	in	Prometheus	and	integrating	with	
notiFication	systems.	Best	practices	for	incident	management	and	response	based	on	real-time	
data.	

Th
eO
psK
art



• Advanced	Observability	Techniques:	Tracing	application	workFlows	with	distributed	tracing	tools.	
Correlating	logs,	metrics,	and	traces	to	gain	a	holistic	view	of	system	behavior	and	performance	
bottlenecks.	

Module 5: Security and Compliance in DevOps 

Topics: 
• DevOps	Security	Fundamentals:	Introduction	to	the	principles	of	DevSecOps	and	the	importance	of	

incorporating	security	practices	throughout	the	DevOps	lifecycle.	

• Managing	Secrets	with	HashiCorp	Vault:	In-depth	exploration	of	HashiCorp	Vault	for	secrets	
management,	including	setup,	secure	access,	dynamic	secrets,	and	best	practices	for	integration	
with	DevOps	pipelines.	

• Automated	Vulnerability	Assessment:	Techniques	and	tools	for	conducting	automated	vulnerability	
assessments	within	CI/CD	pipelines,	including	static	and	dynamic	analysis,	container	scanning,	and	
dependency	checking.	

• Compliance	in	DevOps:	Understanding	key	compliance	standards	relevant	to	software	
development	and	deployment,	such	as	PCI	DSS,	HIPAA,	and	GDPR,	and	strategies	for	ensuring	
compliance	through	automated	checks	and	balances.	

• Implementing	Security	Policies	and	Governance:	Developing	and	enforcing	security	policies	across	
DevOps	workFlows,	utilizing	tools	and	practices	for	role-based	access	control,	audit	trails,	and	
compliance	reporting.	

Module 6: Cloud-Na0ve Development Prac0ces 

Topics: 
• Cloud-Native	Foundations:	Introduction	to	cloud-native	concepts,	beneFits	of	cloud-native	
architectures,	and	the	distinction	between	monolithic	and	microservices	architectures.	

• Microservices	Architecture:	Designing	and	developing	applications	using	microservices,	focusing	on	
domain-driven	design,	service	discovery,	and	communication	patterns.	

• Serverless	Computing:	Leveraging	serverless	computing	for	cost-efFicient	and	scalable	application	
development,	including	functions	as	a	service	(FaaS)	platforms	like	AWS	Lambda,	Azure	Functions,	
and	Google	Cloud	Functions.	

• Data	Security	in	Cloud-Native	Applications:	Implementing	robust	data	security	measures,	encryption	
practices,	and	secure	access	patterns	to	protect	sensitive	information.	

• Compliance	with	Healthcare	Regulations:	Understanding	healthcare	industry	regulations	such	as	
HIPAA	in	the	US,	ensuring	applications	comply	with	data	protection	and	privacy	standards.	

Th
eO
psK
art



Module 7: Performance Tuning and Op0miza0on 

Topics: 
• Performance	Analysis	Techniques:	Understanding	how	to	use	monitoring	tools	to	collect	and	

analyze	performance	data,	identifying	bottlenecks	in	application	and	database	layers.	

• Application	Optimization	Strategies:	Techniques	for	optimizing	application	code	and	architecture,	
including	proFiling,	caching,	and	asynchronous	processing,	to	improve	response	times	and	resource	
utilization.	

• Database	Performance	Tuning:	Best	practices	for	tuning	database	queries	and	schemas,	indexing,	
and	leveraging	cloud	database	services	for	scalability	and	reliability.	

• Cloud	Resource	Optimization:	Strategies	for	optimizing	cloud	resource	allocation,	including	auto-
scaling,	load	balancing,	and	choosing	the	right	compute	and	storage	options	to	balance	
performance	and	cost.	

• User	Experience	and	Performance:	Approaches	to	measure	and	enhance	the	end-user	experience,	
incorporating	frontend	optimizations,	content	delivery	networks	(CDN),	and	web	performance	
best	practices.	

• Project:	Performance	Optimization	Audit	for	STU	Education's	Online	Learning	Platform	

• Problem	Statement:	

Deliverables:	

- Comprehensive	lecture	notes	and	slides	for	each	module.	

- Step-by-step	guides	for	hands-on	projects.	

- Access	to	a	forum	for	Q&A	and	discussions.	

- Final	assessment	test	to	evaluate	understanding	and	practical	skills.	

CertiFicate	of	completion.	

This	course	structure	is	designed	to	provide	a	thorough	understanding	of	DevOps,	from	basic	concepts	
to	advanced	practices,	with	a	strong	focus	on	real-world	applications	and	projects	that	prepare	
students	for	implementing	DevOps	in	their	Production	environments	effectively.	

Th
eO
psK
art



Hands-on Projects

Project	1:	Multi-Region,	High	Availability	Cloud	Infrastructure	for	a	Web	
Application	
	

Problem	Statement:		

As	an	architect	at	ABC	Company,	you	are	tasked	with	designing	a	cloud	infrastructure	that	supports	a	
web	application	with	stringent	requirements	for	high	availability	and	disaster	recovery.	The	current	
infrastructure	does	not	adequately	support	these	requirements,	leading	to	potential	risks	in	data	loss	
and	service	downtime.	Your	challenge	is	to	use	Terraform	and	AWS	CloudFormation	to	create	a	robust	
infrastructure	that	spans	multiple	regions,	incorporates	disaster	recovery	strategies,	and	ensures	data	
is	replicated	securely	and	efFiciently.	

Objective:	

Design	and	implement	a	multi-region,	highly	available	cloud	infrastructure	for	a	critical	web	
application,	incorporating	disaster	recovery	and	data	replication	strategies	using	Terraform	and	AWS	
CloudFormation.	

Task	Breakdown	

Task	1:	Designing	the	Infrastructure	

Objective:	Create	a	detailed	infrastructure	design	that	meets	the	high	availability	and	disaster	recovery	
requirements.	

Activities:	

• DeFine	the	architecture,	including	the	selection	of	AWS	regions,	VPC	setup,	subnets,	and	the	
distribution	of	resources	to	ensure	high	availability.	

• Plan	for	disaster	recovery	by	designing	a	multi-region	deployment	strategy	that	includes	data	
replication	and	automated	failover	mechanisms.	

Task	2:		Implementing	the	Infrastructure	with	Terraform	and	CloudFormation	

Objective:	Develop	the	infrastructure	as	code	using	Terraform	and	AWS	CloudFormation.	

Activities:	

• Use	Terraform	to	provision	the	foundational	cloud	resources,	emphasizing	modularity	and	
reusability	of	code.	

• Supplement	with	AWS	CloudFormation	for	AWS-speciFic	resources	and	services,	ensuring	seamless	
integration	and	management.	

Th
eO
psK
art



Task	3:	Automating	Disaster	Recovery	and	Data	Replication	

Objective:		Implement	automated	disaster	recovery	and	data	replication	strategies.	

Activities:		

• ConFigure	cross-region	Amazon	RDS	instances	or	DynamoDB	tables	for	automatic	data	replication.	

• Set	up	automated	failover	processes	using	Route	53	health	checks	and	DNS	failover	policies.	

Task	4:	Validation	and	Testing	

Objective:		Ensure	the	infrastructure	meets	all	requirements	for	high	availability,	disaster	recovery,	and	
data	replication.	

Activities:		

• Conduct	load	testing	to	validate	the	high	availability	setup	under	simulated	trafFic	spikes.	

• Test	disaster	recovery	procedures	to	verify	automatic	failover	and	data	integrity	in	secondary	
regions.	

Deliverables:	

- A	comprehensive	infrastructure	codebase	using	Terraform	and	AWS	CloudFormation,	with	
documentation	on	design	choices	and	conFigurations.	

- Detailed	implementation	plans	for	disaster	recovery	and	high	availability	setups,	including	data	
replication	strategies	across	multiple	regions.	

- Test	reports	validating	the	infrastructure's	resilience,	scalability,	and	compliance	with	the	initial	
requirements,	ensuring	the	web	application	remains	robust	and	reliable	under	various	scenarios.	

- This	project	within	Module	1	provides	a	hands-on,	real-world	scenario	for	students	to	apply	
advanced	IaC	concepts,	preparing	them	to	tackle	complex	infrastructure	challenges	in	production	
environments.	

===============================================================================	

Project	2:	CI/CD	Pipeline	for	a	Microservices-Based	Application	at	XYZ	
FinTech	
Problem	Statement:	

XYZ	FinTech	is	rapidly	evolving,	requiring	a	robust	CI/CD	pipeline	to	manage	the	deployment	of	its	
microservices-based	application.	The	current	deployment	process	is	manual,	time-consuming,	and	
prone	to	errors,	leading	to	downtime	during	updates	that	affect	customer	satisfaction.	As	the	lead	
DevOps	engineer,	your	challenge	is	to	implement	a	CI/CD	pipeline	using	Jenkins	and	Harness	that	
integrates	automated	testing,	security	scans,	and	adopts	a	blue/green	deployment	strategy	to	ensure	
the	application	remains	available	and	secure	at	all	times.	

Th
eO
psK
art



Objective:	

Design	and	deploy	an	advanced	CI/CD	pipeline	for	XYZ	FinTech's	microservices-based	application,	
incorporating	automated	testing,	security	scanning,	and	blue/green	deployment	to	achieve	zero	
downtime	during	updates.	

Task	Breakdown	

Task	1:	Setting	Up	Jenkins	and	Harness	

Objective:	Establish	the	foundational	CI/CD	tools	for	the	project.	

Activities:	

• Install	and	conFigure	Jenkins	for	continuous	integration,	setting	up	build	jobs	for	each	microservice.	

• Integrate	Jenkins	with	Harness	for	continuous	deployment,	ensuring	a	seamless	Flow	from	code	
commit	to	deployment.	

Task	2:	Integrating	Automated	Testing	

Objective:	Ensure	code	quality	and	reliability	through	automated	testing.	

Activities:	

• Implement	unit	and	integration	testing	within	Jenkins	pipelines,	running	tests	automatically	on	
every	commit.	

• ConFigure	end-to-end	testing	in	Harness	deployment	pipelines	to	validate	functionality	in	a	pre-
production	environment.	

	

Task	3:	Implementing	Security	Scans	

Objective:		Incorporate	security	scanning	within	the	CI/CD	process.	

Activities:		

• Integrate	automated	security	scanning	tools	(like	SonarQube	or	Snyk)	with	Jenkins	to	scan	code	and	
dependencies	for	vulnerabilities.	

• Analyze	scan	results	and	automate	the	triage	process	to	address	critical	vulnerabilities	before	
deployment.	

Task	4:	Deploying	with	Blue/Green	Strategy	

Objective:		Minimize	downtime	and	risk	during	deployments.	

Activities:		

• Set	up	blue/green	deployment	pipelines	in	Harness,	deFining	criteria	for	trafFic	switching	to	the	new	
version.	

Th
eO
psK
art



• Implement	automated	rollbacks	in	case	of	deployment	failure	or	degraded	performance	in	the	green	
environment.	

Task	5:	Monitoring	and	Optimization	

Objective:		Establish	monitoring	for	continuous	improvement	of	the	CI/CD	process.	

Activities:		

• Integrate	monitoring	tools	to	track	the	performance	and	health	of	both	the	CI/CD	pipeline	and	the	
deployed	application.	

• Use	feedback	from	monitoring	tools	to	continuously	reFine	and	optimize	the	CI/CD	pipeline	for	
efFiciency,	reliability,	and	performance.	

Deliverables:	

- A	fully	functional	CI/CD	pipeline	conFigured	with	Jenkins	and	Harness,	tailored	for	a	microservices	
architecture.	

- Documentation	detailing	the	setup	process,	integration	points,	testing	protocols,	and	security	
scanning	procedures.	

- A	report	on	the	implementation	of	the	blue/green	deployment	strategy,	including	metrics	on	
downtime	reduction	and	deployment	success	rates.	

Project	3:	Video	Processing	Application	Deployment	at	DEF	Media	
Problem	Statement	:	

DEF	Media	is	enhancing	its	video	processing	capabilities	to	meet	increasing	demand	and	improve	
service	reliability.	As	the	lead	DevOps	engineer,	your	mission	is	to	deploy	a	new	video	processing	
application	on	Kubernetes,	ensuring	it	can	dynamically	scale	to	handle	variable	workloads,	distribute	
tasks	efFiciently	through	load	balancing,	and	maintain	service	continuity	through	Kubernetes'	self-
healing	features.	

Objective:	

To	deploy	a	robust	video	processing	application	on	Kubernetes	for	DEF	Media	that	embodies	auto-
scaling,	effective	load	balancing,	and	self-healing	to	guarantee	optimal	performance	and	reliability.	

Task	Breakdown	

Task	1:		Application	Containerization	

Objective:	Containerize	the	video	processing	application	for	Kubernetes	deployment.	

Activities:	

• Create	DockerFiles	for	the	application's	services,	ensuring	optimization	and	security	practices	are	
adhered	to.	

Th
eO
psK
art



• Build	and	push	the	Docker	images	to	a	registry	accessible	by	Kubernetes.	

Task	2:	Kubernetes	Deployment	ConFiguration	

Objective:	ConFigure	Kubernetes	resources	for	deploying	the	application.	

Activities:	

• Write	Kubernetes	YAML	manifest	Files	for	the	application's	deployments,	services,	and	any	necessary	
ingress	controllers	for	external	access.	

• Utilize	Helm	charts	for	templating	and	managing	Kubernetes	resources,	streamlining	the	deployment	
process.	

Task	3:	Implementing	Auto-Scaling	and	Load	Balancing	

Objective:		Ensure	the	application	can	automatically	scale	and	distribute	load.	

Activities:		

• ConFigure	Horizontal	Pod	Autoscaler	(HPA)	for	the	application,	setting	appropriate	metrics	for	
scaling.	

• Implement	a	LoadBalancer	service	or	an	Ingress	controller	to	manage	incoming	trafFic	and	ensure	
efFicient	load	distribution.	

Task	4:	Ensuring	Application	Resilience	

Objective:		Leverage	Kubernetes'	self-healing	features	for	application	resilience.	

Activities:		

• DeFine	readiness	and	liveness	probes	for	each	service,	facilitating	Kubernetes	in	managing	the	
application's	health.	

• Simulate	failure	scenarios	to	test	Kubernetes'	ability	to	automatically	replace	failed	containers	and	
maintain	application	availability.	

Deliverables:	

- DockerFiles	and	Kubernetes	manifest	Files	or	Helm	charts	for	the	video	processing	application,	along	
with	detailed	documentation	on	their	setup	and	management.	

- A	deployment	strategy	report	that	outlines	the	implementation	of	auto-scaling,	load	balancing,	and	
self-healing	mechanisms,	including	metrics	for	monitoring	application	performance	and	scalability.	

- An	evaluation	of	the	deployment's	success,	highlighting	how	Kubernetes	features	have	been	
leveraged	to	enhance	application	reliability	and	performance,	along	with	recommendations	for	
future	optimizations.	

===============================================================================		

Th
eO
psK
art



Project	4:	Centralized	Observability	Platform	for	GHI	Retail's	E-Commerce	
Platform	
Overview:	

In	Module	4,	students	will	master	the	art	and	science	of	implementing	sophisticated	
monitoring,	logging,	and	observability	solutions	for	modern	applications	and	infrastructure.	
Utilizing	industry-standard	tools	like	Prometheus,	Grafana,	and	the	ELK	Stack	(Elasticsearch,	
Logstash,	Kibana),	the	module	covers	the	end-to-end	process	of	capturing,	analyzing,	and	
visualizing	operational	data.	This	knowledge	enables	DevOps	professionals	to	proactively	
manage	system	performance,	troubleshoot	issues	efFiciently,	and	enhance	user	experience	
through	real-time	insights.	

Problem	Statement	:	

GHI	Retail	is	experiencing	rapid	growth	in	its	e-commerce	platform	but	faces	challenges	in	maintaining	
optimal	performance	and	ensuring	a	seamless	user	experience.	With	the	complexity	of	the	platform's	
microservices	architecture,	the	current	observability	practices	are	inadequate	for	detecting	and	
resolving	issues	promptly.	As	the	lead	DevOps	engineer,	your	objective	is	to	set	up	a	centralized	
observability	platform	that	integrates	monitoring,	logging,	and	alerting	capabilities	to	enable	real-time	
insights	into	the	platform's	operations.	

Objective:	

Implement	a	comprehensive	observability	platform	for	GHI	Retail's	e-commerce	platform,	
utilizing	Prometheus,	Grafana,	and	the	ELK	Stack	to	facilitate	real-time	monitoring,	alerting,	
and	log	analysis.	

Task	Breakdown	

Task	1:		Implementing	Monitoring	with	Prometheus	and	Grafana	

Objective:		

Set	up	Prometheus	for	metric	collection	and	Grafana	for	visualization	to	monitor	the	e-commerce	
platform's	performance.	

Activities:	

• Install	and	conFigure	Prometheus	to	scrape	metrics	from	the	e-commerce	platform's	services.	

• Create	Grafana	dashboards	that	visualize	key	performance	indicators	(KPIs)	critical	for	the	
platform's	operations	and	user	experience.	

Task	2:		Centralized	Logging	with	the	ELK	Stack	

Objective:		

Deploy	the	ELK	Stack	for	centralized	log	management,	enabling	efFicient	log	analysis	and	
troubleshooting.	

Th
eO
psK
art



Activities:	

• ConFigure	Logstash	to	collect	logs	from	various	services	within	the	e-commerce	platform.	

• Use	Elasticsearch	for	log	storage	and	Kibana	for	creating	insightful	log	visualizations.	

Task	3:		ConFiguring	Alerting	and	Incident	Management	

Objective:		

Establish	alerting	mechanisms	for	operational	anomalies	and	integrate	with	incident	management	
workFlows.	

Activities:	

• DeFine	alerting	rules	in	Prometheus	based	on	critical	thresholds	and	anomalies.	

• Integrate	alert	notiFications	with	communication	channels	and	incident	management	tools	used	by	
the	DevOps	and	support	teams.	

Task	4:		Advanced	Observability	and	Optimization	

Objective:		

Enhance	the	observability	platform	with	advanced	techniques	and	optimize	it	for	scalability	and	
reliability.	

Activities:	

• Implement	distributed	tracing	for	deeper	insight	into	the	e-commerce	platform's	transactions	and	
workFlows.	

• Conduct	performance	tuning	of	the	observability	tools	to	handle	increased	data	volume	and	ensure	
scalability.	

Deliverables:	

- A	fully	functional	observability	platform	comprising	Prometheus,	Grafana,	and	the	ELK	Stack,	
tailored	for	GHI	Retail's	e-commerce	platform,	complete	with	installation	and	conFiguration	guides.	

- Customized	Grafana	dashboards	and	Kibana	visualizations	that	provide	real-time	insights	into	
system	performance	and	user	experience.	

- Documentation	on	alerting	conFigurations,	incident	management	procedures,	and	insights	gained	
from	the	observability	platform	that	have	led	to	performance	optimizations.	

===============================================================================	

Th
eO
psK
art



Project	5:	Securing	JKL	Bank's	Application	Deployment	Pipeline	

Overview:	

Module	5	is	meticulously	crafted	to	address	the	critical	intersection	of	security,	compliance,	and	
DevOps,	offering	students	a	deep	dive	into	the	practices,	tools,	and	strategies	essential	for	securing	
DevOps	workFlows.	By	focusing	on	vulnerability	assessments,	secrets	management,	and	adherence	to	
compliance	standards,	this	module	equips	students	with	the	knowledge	to	implement	a	security-First	
approach	in	any	DevOps	pipeline.	Emphasizing	hands-on	experience	with	leading	security	tools	like	
HashiCorp	Vault	and	automated	security	scanning	solutions,	students	will	learn	to	navigate	the	
complexities	of	securing	application	deployment	pipelines	while	ensuring	compliance	with	industry	
standards	such	as	PCI	DSS.	

Problem	Statement	:	

JKL	Bank	is	transforming	its	software	delivery	process	to	adopt	DevOps	practices	but	faces	signiFicant	
challenges	in	meeting	stringent	security	requirements	and	compliance	with	PCI	DSS	standards.	As	the	
security	architect,	you	are	tasked	with	redesigning	the	bank's	application	deployment	pipeline	to	
incorporate	a	security-First	approach,	integrating	HashiCorp	Vault	for	secrets	management,	and	
automating	security	assessments	to	ensure	the	protection	of	sensitive	data	and	compliance	with	
regulatory	standards.	

Objective:	

Design	and	implement	a	secure,	compliant	application	deployment	pipeline	for	JKL	Bank,	leveraging	
HashiCorp	Vault	for	secrets	management	and	integrating	automated	security	assessments	to	meet	PCI	
DSS	compliance	requirements.	

Task	Breakdown	

Task	1:		Integrating	HashiCorp	Vault	for	Secrets	Management	

Objective:	Securely	manage	secrets	and	sensitive	conFigurations	using	HashiCorp	Vault.	

Activities:	

• Set	up	HashiCorp	Vault	within	the	bank's	infrastructure,	ensuring	secure	storage	and	access	to	API	
keys,	database	credentials,	and	other	secrets.	

• Integrate	Vault	with	the	CI/CD	pipeline	to	dynamically	inject	secrets	at	runtime,	eliminating	hard-
coded	or	exposed	credentials.	

Task	2:	Automating	Vulnerability	Assessments	

Objective:	Incorporate	automated	security	scanning	and	vulnerability	assessments	in	the	CI/CD	
pipeline.	

Activities:	

• Select	and	integrate	automated	security	scanning	tools	that	support	static	analysis,	container	
scanning,	and	dependency	checks.	

• ConFigure	scanning	triggers	within	the	CI/CD	pipeline	to	ensure	every	build	and	deployment	is	
assessed	for	vulnerabilities,	with	fail-safe	mechanisms	for	critical	Findings.	

Th
eO
psK
art



Task	3:	Ensuring	PCI	DSS	Compliance	

Objective:		Implement	compliance	checks	and	reporting	mechanisms	to	adhere	to	PCI	DSS	standards.	

Activities:		

• Develop	a	compliance	checklist	based	on	PCI	DSS	requirements	relevant	to	the	application	and	data	
handling	processes.	

• Automate	compliance	checks	within	the	deployment	pipeline,	including	data	encryption	validation,	
access	controls,	and	audit	logging.	

Task	4:	Security	Policies	and	Governance	

Objective:		Establish	security	policies	and	governance	practices	within	DevOps	workFlows..	

Activities:		

• DeFine	security	policies	for	code	reviews,	access	to	production	environments,	and	incident	response.	

• Implement	role-based	access	controls	and	audit	trails	to	monitor	and	govern	access	to	deployment	
tools,	environments,	and	sensitive	operations.	

Deliverables:	

- A	comprehensive	security-First	deployment	pipeline	conFiguration,	integrating	HashiCorp	Vault	for	
secrets	management	and	automated	security	assessments.	

- Documentation	detailing	the	setup,	conFiguration,	and	integration	of	security	tools	and	practices	
within	the	pipeline,	including	guidelines	for	Vault	usage	and	security	scanning.	

- A	PCI	DSS	compliance	report	showcasing	the	compliance	checks,	Findings,	and	remediation	actions	
taken,	afFirming	the	pipeline's	adherence	to	regulatory	standards.	

Project	6:	Serverless	Patient	Data	Processing	Application	for	MNO	
Healthcare	

Overview: 

This	Module	offers	an	in-depth	exploration	into	the	principles	and	practices	of	cloud-native	
development,	a	pivotal	approach	for	creating	applications	that	leverage	the	full	potential	of	cloud	
computing.	This	module	equips	students	with	the	knowledge	and	skills	to	design,	build,	and	deploy	
resilient	and	scalable	applications	using	cloud-native	architectures,	including	microservices	and	
serverless	computing.	Emphasis	is	placed	on	architectural	patterns,	data	security,	and	regulatory	
compliance,	preparing	students	to	tackle	development	challenges	in	highly	regulated	industries	such	
as	healthcare.	

Problem	Statement:	

MNO	Healthcare	is	seeking	to	modernize	its	patient	data	processing	system	to	improve	scalability,	
security,	and	compliance	with	healthcare	industry	regulations.	As	the	solution	architect,	you	are	tasked	
with	developing	a	serverless	application	that	efFiciently	processes	and	analyzes	patient	data,	ensuring	

Th
eO
psK
art



the	system	is	capable	of	handling	Fluctuating	workloads	while	maintaining	stringent	data	security	and	
regulatory	compliance.	

Objective:	

Design	and	implement	a	scalable,	secure	serverless	application	for	patient	data	processing	at	MNO	
Healthcare,	adhering	to	cloud-native	development	principles	and	compliance	with	healthcare	industry	
regulations.	

Task	Breakdown	

Task	1:		Designing	the	Serverless	Architecture	

Objective:	Architect	a	serverless	solution	for	processing	patient	data.	

Activities:	

• Map	out	the	serverless	architecture,	identifying	key	components	such	as	data	ingestion,	processing	
functions,	data	storage,	and	user	interface.	

• Select	appropriate	cloud	services	for	each	component	of	the	architecture,	ensuring	integration	and	
scalability.	

Task	2:	Implementing	Data	Security	Measures	

Objective:	Ensure	the	application	adheres	to	best	practices	for	data	security.	

Activities:	

• Implement	encryption	in	transit	and	at	rest	for	all	patient	data	handled	by	the	application.	

• Design	secure	access	mechanisms,	including	authentication	and	authorization	for	users	and	services	
interacting	with	the	application.	

Task	3:	Developing	and	Deploying	the	Application	

Objective:		Build	and	deploy	the	serverless	application.	

Activities:		

• Develop	serverless	functions	for	data	ingestion,	processing,	and	analysis,	using	cloud-native	
development	practices.	

• Deploy	the	application	components	to	the	chosen	cloud	platform,	conFiguring	autoscaling	and	
monitoring	as	necessary.	

Th
eO
psK
art



Task	4:	Ensuring	Regulatory	Compliance	

Objective:		Validate	compliance	with	healthcare	industry	regulations.	

Activities:		

• Conduct	a	compliance	audit	of	the	application,	reviewing	data	handling	practices,	security	measures,	
and	access	controls	against	healthcare	regulations.	

• Document	compliance	measures	and	prepare	a	report	detailing	how	the	application	meets	
regulatory	standards.	

Deliverables:	

- A	detailed	design	document	outlining	the	serverless	architecture	and	rationale	for	component	
selection.	

- Source	code	for	the	serverless	application,	including	deployment	scripts	and	conFiguration	Files.	

- A	security	and	compliance	report,	demonstrating	the	application's	adherence	to	data	security	best	
practices	and	healthcare	regulations.	

===============================================================================	

Project	7:	Performance	Optimization	Audit	for	STU	Education's	Online	
Learning	Platform	

Overview:	

This	module	is	meticulously	curated	to	arm	students	with	advanced	techniques	for	optimizing	
application	and	database	performance	in	cloud	environments.	Given	the	dynamic	and	scalable	nature	
of	cloud	computing,	this	module	emphasizes	practical	strategies	for	identifying	performance	
bottlenecks	and	implementing	optimizations	to	enhance	efFiciency,	reduce	costs,	and	improve	user	
experiences.	Through	a	blend	of	theoretical	insights	and	real-world	applications,	students	will	become	
adept	at	diagnosing	and	resolving	performance	issues	in	cloud-deployed	applications,	ensuring	they	
are	well-prepared	to	manage	and	optimize	modern	software	systems.	

Problem	Statement	:	

STU	Education's	online	learning	platform	has	experienced	signiFicant	growth	in	user	trafFic,	leading	to	
performance	issues	that	negatively	impact	the	user	experience,	including	slow	page	loads	and	
occasional	downtime.	As	the	performance	optimization	specialist,	you	are	tasked	with	conducting	a	
comprehensive	audit	of	the	platform	to	identify	performance	bottlenecks	and	implement	necessary	
enhancements	to	ensure	the	platform	can	efFiciently	handle	increased	trafFic	and	meet	user	satisfaction	
benchmarks.	

Objective:	

Th
eO
psK
art



Perform	a	detailed	performance	optimization	audit	for	STU	Education's	online	learning	platform,	
identifying	key	bottlenecks	and	executing	optimizations	to	improve	scalability,	efFiciency,	and	user	
satisfaction.	

Task	Breakdown	

Task	1:		Conducting	the	Performance	Audit	

Objective:	Analyze	the	current	performance	of	the	online	learning	platform.	

	

Activities:	

• Utilize	monitoring	and	proFiling	tools	to	collect	performance	data	across	the	application	and	
database	layers.	

• Identify	critical	performance	bottlenecks	affecting	user	experience,	response	times,	and	system	
scalability.	

Task	2:	Application	and	Frontend	Optimizations	

Objective:	Implement	optimizations	in	the	application	code	and	frontend.	

Activities:	

• Refactor	inefFicient	code	paths	and	implement	caching	strategies	to	reduce	server	load	and	improve	
response	times.	

• Optimize	frontend	assets,	implement	lazy	loading,	and	leverage	CDNs	to	enhance	page	load	speeds.	

Task	3:	Database	Performance	Tuning	

Objective:		Optimize	database	interactions	to	improve	data	retrieval	and	storage	efFiciency.	

Activities:		

• Analyze	and	optimize	slow	database	queries,	introduce	appropriate	indexing,	and	adjust	database	
conFigurations	for	optimal	performance.	

• Consider	scaling	options	provided	by	the	cloud	provider,	such	as	read	replicas	or	sharding,	to	handle	
increased	load.	

Task	4:	Cloud	Resource	Optimization	

Objective:		Fine-tune	cloud	resource	allocation	and	conFigurations	to	meet	performance	goals	
efFiciently.	

Activities:		

• Assess	and	adjust	compute	and	storage	resources,	implementing	auto-scaling	policies	to	dynamically	
adapt	to	trafFic	patterns.	

• Review	and	optimize	cloud	service	costs,	ensuring	that	the	platform	uses	the	most	cost-effective	
resources	to	deliver	the	desired	performance.	

Th
eO
psK
art



	

Deliverables:	

- A	comprehensive	performance	optimization	audit	report	detailing	identiFied	bottlenecks,	proposed	
optimizations,	and	expected	outcomes.	

- Documentation	of	implemented	application,	database,	and	frontend	optimizations,	including	before-
and-after	performance	metrics.	

- A	cloud	resource	optimization	strategy,	including	auto-scaling	conFigurations	and	cost	management	
plans.	

==============================================================================	

EACH PROJECT IS DESIGNED TO SIMULATE SCENARIOS THAT PROFESSIONALS MIGHT 
ENCOUNTER IN REAL-WORLD SETTINGS, ALLOWING STUDENTS TO APPLY THEIR KNOWLEDGE 
OF HARNESS AND GITOPS PRINCIPLES TO SOLVE PRACTICAL PROBLEMS. 

Th
eO
psK
art


	Master Course on Cloud-Native DevOps with Multiple Projects

