
Advanced Terraform Course for Intermediate Students 

Course Overview: 

This	course	aims	to	elevate	the	Terraform	skills	of	intermediate-level	students	by	covering	advanced	
concepts	and	hands-on	practices	in	infrastructure	as	code.	Students	will	explore	advanced	Terraform	
features,	best	practices	for	scalable	and	maintainable	Terraform	code,	and	integrations	with	various	
cloud	providers	and	external	tools.	The	course	includes	a	blend	of	theoretical	knowledge,	practical	
exercises,	and	real-world	scenarios	to	prepare	students	for	complex	IaC	tasks	and	challenges.	

Module 1: Terraform State Management 
• Deep	dive	into	Terraform	state	Ailes,	backend	conAigurations,	and	state	locking.	

• Strategies	for	state	Aile	troubleshooting	and	recovery.	

Module 2: Modular Terraform Configura>ons 
• Designing	reusable	and	maintainable	modules	for	common	infrastructure	patterns.	

• Managing	module	versions	and	sources.	

• Publishing	and	consuming	modules	in	the	Terraform	Registry.	

Module 3: Managing Mul>ple Environments 
• Best	practices	for	structuring	Terraform	code	to	manage	multiple	environments	(development,	

staging,	production).	

• Utilizing	workspaces	and	variable	Ailes	to	streamline	environment	management.	

Module 4: Advanced Resource Lifecycle Management 
• Understanding	resource	dependencies	and	lifecycle	blocks.	

• Implementing	zero-downtime	deployment	strategies	with	Terraform.	

Module 5: Dynamic Configura>ons 
• Leveraging	data	sources	and	dynamic	blocks	to	create	Alexible	conAigurations.	

• Advanced	templating	with	Terraform.	

Module 6: Integra>ng Terraform with Cloud-Na>ve Services 
• Automating	DNS	conAigurations,	serverless	functions,	and	container	orchestration	services.	

• Case	studies	on	Terraform	integration	with	AWS,	Azure,	and	GCP	services.	

Module 7: Security and Compliance in Terraform 
• Implementing	secrets	management	in	Terraform	projects	

• Using	policy	as	code	tools	like	Sentinel	or	OPA	with	Terraform	for	compliance	checks	

Module 8: Terraform Collabora>on and Automa>on 
• Collaborative	workAlows	with	Terraform	Cloud	and	Terraform	Enterprise	

• Automating	Terraform	runs	with	CI/CD	pipelines	

Th
eO
psK
art



Module 9: Monitoring and Maintenance 
• Collaborative	workAlows	with	Terraform	Cloud	and	Terraform	Enterprise	

• Automating	Terraform	runs	with	CI/CD	pipelines	

Hands-on Projects

Project:	Multi-Environment	Web	Application	Deployment	with	Terraform	
Project	Overview:		

This	project	aims	to	teach	students	how	to	use	Terraform	to	deploy	a	scalable	web	application	across	
multiple	environments	(development,	staging,	and	production)	efAiciently.	The	focus	will	be	on	
utilizing	modular	Terraform	conAigurations	to	ensure	code	reusability	and	maintainability.	Students	
will	learn	to	manage	environment-speciAic	conAigurations	and	understand	the	principles	of	
infrastructure	as	code	(IaC)	in	practice.	

Objective:	

Develop	and	deploy	a	web	application	across	multiple	environments	using	Terraform,	demonstrating	
the	ability	to	manage	complex	infrastructure	deployments	with	modular	and	reusable	code.	

Task	1:	Infrastructure	Planning	and	Design	

Objective:	Design	the	overall	architecture	for	the	web	application,	identifying	the	resources	needed	for	
each	environment.	

Activities:	

• DeAine	the	core	components	of	the	web	application	architecture	(e.g.,	web	servers,	databases,	load	
balancers).	

• Identify	the	differences	between	environments	(e.g.,	size	of	compute	resources,	database	
conAigurations)	and	plan	how	to	manage	these	variations	with	Terraform.	

• Design	a	module	structure	that	allows	for	reusability	and	manageability	of	Terraform	code.	

Task	2:	Creating	Terraform	Modules	

Objective:	Develop	Terraform	modules	that	encapsulate	different	parts	of	the	infrastructure.	

Activities:	

• Create	a	Terraform	module	for	the	compute	resources,	including	conAiguration	for	autoscaling.	

• Develop	a	database	module	that	can	be	conAigured	for	different	environments,	ensuring	data	
isolation.	

• Implement	a	networking	module	for	setting	up	VPCs,	subnets,	and	load	balancers.	

Task	3:	Environment-SpeciAic	ConAigurations	

Objective:		Utilize	Terraform	workspaces	and	variable	Ailes	to	manage	conAigurations	unique	to	
development,	staging,	and	production	environments.	

Activities:		

• Set	up	Terraform	workspaces	for	each	environment	to	keep	state	Ailes	separate	and	organized.	

Th
eO
psK
art



• Create	variable	Ailes	(terraform.tfvars)	for	each	environment,	specifying	environment-speciAic	
conAigurations	such	as	instance	sizes,	database	versions,	and	resource	tags.	

• Write	conditionals	within	modules	to	adjust	resource	conAigurations	based	on	the	current	workspace	
or	variables.	

Task	4:	Deploying	to	Multiple	Environments	

Objective:		Execute	Terraform	plans	to	deploy	the	web	application	infrastructure	across	development,	
staging,	and	production	environments.	

Activities:		

• Use	Terraform	commands	to	initialize	the	environment,	plan	the	deployment,	and	apply	the	
conAiguration	for	each	workspace.	

• Validate	the	deployment	in	each	environment,	ensuring	the	infrastructure	is	correctly	provisioned	
and	conAigured.	

• Implement	a	rollback	plan	using	Terraform	to	handle	deployment	failures	or	issues.	

Task	5:	Monitoring	and	Maintenance	

Objective:		Establish	practices	for	monitoring,	updating,	and	maintaining	the	infrastructure	over	time.	

Activities:		

• Integrate	cloud	provider	monitoring	tools	(e.g.,	AWS	CloudWatch,	Azure	Monitor)	to	track	the	
performance	and	health	of	the	application.	

• Plan	for	regular	Terraform	code	reviews	and	refactoring	sessions	to	improve	efAiciency	and	reduce	
technical	debt.	

• Document	the	process	for	updating	the	Terraform	conAiguration	and	redeploying	infrastructure	
changes	across	environments.	

Deliverables:	

- A	set	of	reusable	Terraform	modules	representing	the	core	components	of	the	web	application	
infrastructure.	

- Terraform	workspace	conAigurations	and	variable	Ailes	for	managing	multiple	environments.	

- A	comprehensive	deployment	guide	detailing	the	steps	to	deploy	and	manage	the	web	application	
across	development,	staging,	and	production	environments	using	Terraform.	

- A	monitoring	and	maintenance	strategy	to	ensure	the	ongoing	reliability	and	performance	of	the	
web	application	infrastructure.	

===============================================================================	

Project:	Serverless	Infrastructure	Automation	
Project	Overview	:	

This	project	focuses	on	automating	the	deployment	of	a	serverless	application	stack,	utilizing	cloud	
services	such	as	AWS	Lambda,	Azure	Functions,	or	Google	Cloud	Functions.	Students	will	learn	to	
leverage	infrastructure	as	code	(IaC)	tools	and	practices	to	deploy	a	fully	serverless	architecture,	

Th
eO
psK
art



including	functions,	API	gateways,	and	data	stores.	The	project	aims	to	provide	hands-on	experience	
with	serverless	technologies	and	automation,	highlighting	the	beneAits	of	serverless	architecture	in	
terms	of	scalability,	cost,	and	maintenance.	

Objective:	

Develop	an	automated	deployment	pipeline	for	a	serverless	application,	demonstrating	the	ability	to	
integrate	various	serverless	components	and	manage	them	through	IaC.	

Choose	a	Cloud	Provider:	

For	the	purpose	of	this	description,	we'll	focus	on	AWS,	but	similar	concepts	can	be	applied	to	Azure	or	
Google	Cloud	with	their	respective	services.	

Task	1:	Designing	the	Serverless	Application	

Objective:	Outline	the	architecture	and	components	of	the	serverless	application.	

Activities:	

• DeAine	the	application's	functionality	and	identify	the	AWS	services	needed	(e.g.,	AWS	Lambda	for	
compute,	Amazon	API	Gateway	for	HTTP	endpoints,	Amazon	DynamoDB	for	NoSQL	data	storage).	

• Sketch	an	architecture	diagram	to	visualize	the	components	and	data	Alow	within	the	application.	

Task	2:	Preparing	the	Infrastructure	as	Code	(IaC)	ConAiguration	

Objective:	Utilize	IaC	tools	like	AWS	CloudFormation	or	Terraform	to	deAine	the	serverless	
infrastructure.	

Activities:	

• Write	CloudFormation	templates	or	Terraform	conAigurations	to	provision	the	necessary	AWS	
resources.	

• Ensure	the	IaC	conAiguration	includes	Lambda	functions,	API	Gateway	setup,	DynamoDB	tables,	and	
any	necessary	IAM	roles	and	policies	for	access	control.	

Task	3:	Automating	the	Deployment	Process	

Objective:		Implement	an	automated	deployment	pipeline	using	AWS	CodePipeline	or	a	similar	CI/CD	
tool.	

Activities:		

• Set	up	a	source	code	repository	(e.g.,	AWS	CodeCommit,	GitHub)	and	connect	it	to	the	deployment	
pipeline.	

• ConAigure	the	pipeline	to	trigger	deployments	automatically	upon	code	commits	or	at	scheduled	
intervals.	

• Integrate	the	IaC	deployment	step	into	the	pipeline,	ensuring	that	infrastructure	updates	are	applied	
as	part	of	the	deployment	process.	

Task	4:	Testing	and	Validation	

Objective:		Ensure	the	serverless	application	functions	correctly	and	meets	performance	expectations.	

Th
eO
psK
art



Activities:		

• Develop	unit	and	integration	tests	for	the	Lambda	functions	and	the	overall	application.	

• Use	AWS	CodeBuild	or	a	similar	service	within	the	pipeline	to	run	tests	automatically.	

• Perform	load	testing	to	validate	the	application's	scalability	and	responsiveness	under	high	trafAic.	

Task	5:	Monitoring	and	Logging	

Objective:		Set	up	monitoring	and	logging	to	track	the	application's	performance	and	troubleshoot	
issues.	

Activities:		

• ConAigure	Amazon	CloudWatch	Logs	for	Lambda	functions	and	API	Gateway	to	collect	logs.	

• Set	up	CloudWatch	Alarms	to	monitor	key	metrics	(e.g.,	error	rates,	latency)	and	send	notiAications	
for	anomalies.	

• Utilize	AWS	X-Ray	or	similar	services	for	tracing	requests	through	the	serverless	components	to	
debug	and	optimize	performance.	

Deliverables:	

- IaC	conAigurations	for	provisioning	the	serverless	application	stack.	

- A	CI/CD	pipeline	conAiguration	for	automating	the	deployment	process.	

- Documentation	covering	the	application	architecture,	deployment	pipeline	setup,	and	testing	
strategy.	

- A	monitoring	and	logging	setup	that	provides	visibility	into	the	application's	health	and	
performance.	

===============================================================================	

Project:	Container	Orchestration	with	Terraform	
Project	Overview	:	

This	project	focuses	on	leveraging	Terraform	to	provision	and	manage	a	managed	Kubernetes	cluster,	
such	as	Amazon	EKS,	Azure	AKS,	or	Google	GKE,	and	deploy	a	containerized	application	onto	this	
cluster.	Students	will	gain	practical	experience	with	Terraform's	capabilities	for	infrastructure	as	code	
(IaC)	to	automate	the	deployment	of	containerized	applications,	emphasizing	the	orchestration,	
scalability,	and	management	of	containers	in	a	production-like	environment.	

Objective:	

Use	Terraform	to	automate	the	provisioning	of	a	managed	Kubernetes	service	and	deploy	a	multi-
component	containerized	application,	demonstrating	proAiciency	in	managing	container	orchestration	
platforms	and	deploying	applications	in	a	cloud-native	ecosystem.	

Th
eO
psK
art



	

Task	1:	Designing	the	Kubernetes	Cluster	Infrastructure	

Objective:	Plan	the	architecture	for	a	managed	Kubernetes	cluster	that	will	host	the	containerized	
application.	

Activities:	

• Determine	the	requirements	for	the	Kubernetes	cluster,	including	node	sizes,	the	number	of	nodes,	
and	speciAic	conAigurations	like	auto-scaling,	networking,	and	access	controls.	

• Choose	a	cloud	provider's	managed	Kubernetes	service	(EKS,	AKS,	or	GKE)	based	on	the	project	
requirements	or	personal	preference.	

Task	2:	Terraform	ConAiguration	for	Kubernetes	Cluster	

Objective:	Write	Terraform	conAigurations	to	provision	the	managed	Kubernetes	cluster.	

Activities:	

• Create	Terraform	conAigurations	to	deAine	the	managed	Kubernetes	service,	including	cluster	and	
node	pool	deAinitions	with	necessary	conAigurations.	

• Utilize	provider-speciAic	Terraform	modules	or	resources	to	set	up	the	cluster.	

• Apply	best	practices	for	Terraform	state	management	and	modularization	to	organize	the	
infrastructure	code.	

Task	3:	Deploying	the	Containerized	Application	

Objective:		DeAine	and	deploy	a	multi-component	containerized	application	onto	the	Kubernetes	
cluster.	

Activities:		

• Containerize	the	application	components	if	not	already	done,	and	push	the	Docker	images	to	a	
container	registry	(Docker	Hub,	ECR,	ACR,	or	GCR).	

• Create	Kubernetes	deployment	and	service	manifests	for	each	component	of	the	application.	These	
can	be	deAined	directly	in	Terraform	using	the	Kubernetes	provider	or	managed	separately	with	
kubectl.	

• Use	Terraform	to	apply	the	Kubernetes	conAigurations,	ensuring	that	the	application	components	are	
deployed	and	accessible	within	the	cluster.	

Task	4:		Implementing	Scalability	and	Monitoring	

Objective:		ConAigure	auto-scaling	for	the	application	and	set	up	basic	monitoring	and	logging.	

Activities:		

• ConAigure	Horizontal	Pod	Autoscaler	(HPA)	for	the	application	deployments	to	automatically	scale	
the	number	of	pods	based	on	CPU	usage	or	other	metrics.	

• Utilize	the	cloud	provider's	monitoring	tools	(CloudWatch,	Azure	Monitor,	Google	Operations)	to	set	
up	basic	monitoring	and	logging	for	the	Kubernetes	cluster	and	application.	

Th
eO
psK
art



Task	5:	Documentation	and	Cleanup	

Objective:		Document	the	deployment	process	and	clean	up	resources.	

Activities:		

• Document	the	steps	taken	to	provision	the	Kubernetes	cluster	and	deploy	the	application,	including	
any	commands	run	and	Terraform	conAigurations	used.	

• Provide	instructions	for	accessing	the	deployed	application	and	monitoring	its	performance.	

• Outline	the	steps	for	safely	destroying	the	Terraform-managed	resources	to	prevent	unnecessary	
cloud	costs.	

Deliverables:	

- Terraform	conAigurations	for	provisioning	a	managed	Kubernetes	cluster	and	deploying	a	
containerized	application.	

- Kubernetes	deployment	and	service	manifests	for	the	application	components.	

- Documentation	covering	the	architecture	design,	deployment	process,	access	instructions,	and	
cleanup	procedures.	

- Optional:	A	basic	CI/CD	pipeline	deAinition	for	automating	the	application	deployment	process	
through	Terraform.	

===============================================================================	

Project:	Compliance	as	Code	

Project	Overview	:	

This	project	aims	to	introduce	students	to	the	concept	of	"Compliance	as	Code"	by	integrating	security	
and	governance	policies	directly	into	the	infrastructure	as	code	lifecycle	using	Terraform.	Students	will	
learn	how	to	deAine,	enforce,	and	automate	compliance	checks	for	Terraform-managed	resources,	
ensuring	that	infrastructure	deployments	adhere	to	organizational	and	regulatory	standards	from	the	
outset.	

Objective:	

Develop	a	compliance	as	code	framework	within	Terraform	to	automate	the	enforcement	of	security	
and	governance	policies	across	all	Terraform-managed	resources,	demonstrating	an	ability	to	integrate	
compliance	checks	into	the	CI/CD	pipeline	for	infrastructure	deployments.	

Task	1:	Understanding	Compliance	Requirements	

Objective:	Identify	and	document	speciAic	compliance	requirements	relevant	to	the	organization's	
infrastructure	deployments.	

Activities:	

• Collaborate	with	security	and	compliance	teams	to	gather	requirements	and	understand	the	
regulatory	standards	(e.g.,	GDPR,	HIPAA,	PCI-DSS)	applicable	to	the	infrastructure.	

Th
eO
psK
art



• Translate	these	requirements	into	speciAic,	actionable	policies	that	can	be	enforced	through	code	
(e.g.,	encryption	of	data	at	rest	and	in	transit,	least	privilege	access	control).	

Task	2:	DeAining	Compliance	Policies	

Objective:	DeAine	compliance	policies	as	code	using	a	policy-as-code	framework	compatible	with	
Terraform,	such	as	Open	Policy	Agent	(OPA)	or	HashiCorp	Sentinel.	

Activities:	

• Write	policy	deAinitions	that	articulate	the	compliance	requirements	identiAied	in	Task	1.	These	
policies	might	include	rules	around	tagging	standards,	encryption	settings,	and	size	limits	for	
resources.	

• Ensure	policies	are	version-controlled	and	maintained	alongside	Terraform	conAigurations	for	
transparency	and	auditability.	

Task	3:	Integrating	Compliance	Checks	into	Terraform	WorkAlow	

Objective:		Integrate	the	compliance	policies	into	the	Terraform	workAlow,	automating	policy	
enforcement	during	infrastructure	provisioning.	

Activities:		

• onAigure	a	pre-commit	or	pre-apply	hook	in	the	Terraform	workAlow	that	triggers	policy	evaluation	
against	the	Terraform	plan	output.	

• Use	Terraform's	external	data	source	or	integrate	with	the	CI/CD	pipeline	to	evaluate	Terraform	
plans	against	the	deAined	policies	before	allowing	deployment.	

• Set	up	notiAications	for	policy	violations	to	alert	the	infrastructure	team	and	block	deployments	that	
do	not	comply	with	the	policies.	

Task	4:		Automating	Policy	Enforcement	in	CI/CD	

Objective:		Automate	the	enforcement	of	compliance	policies	as	part	of	the	CI/CD	pipeline	for	
infrastructure	code.	

Activities:		

• Integrate	compliance	policy	checks	into	the	CI/CD	pipeline,	ensuring	that	every	update	to	Terraform	
conAigurations	is	automatically	evaluated	against	the	compliance	policies	before	being	applied.	

• ConAigure	the	CI/CD	pipeline	to	fail	the	build	if	policy	violations	are	detected,	requiring	manual	
review	and	adjustments.	

• Document	the	process	for	reviewing	and	addressing	policy	violations,	including	steps	for	
remediation	and	exceptions	handling.	

Th
eO
psK
art



Task	5:	Monitoring	and	Reporting	

Objective:		Implement	monitoring	and	reporting	mechanisms	for	compliance	posture	and	policy	
violations.	

Activities:		

• Leverage	tools	like	Terraform	Cloud	or	Enterprise	features,	or	integrate	with	third-party	logging	and	
monitoring	solutions	to	track	and	report	on	compliance	checks	and	outcomes.	

• Set	up	dashboards	and	reports	that	provide	visibility	into	the	compliance	status	of	infrastructure	
deployments,	highlighting	compliant	resources	and	policy	violations.	

• Develop	a	process	for	regular	compliance	audits,	leveraging	the	automated	compliance	checks	and	
reporting	tools	to	streamline	audit	activities.	

Deliverables:	

- A	set	of	compliance	policies	deAined	as	code,	stored	in	version	control	alongside	Terraform	
conAigurations.	

- Integration	of	compliance	checks	into	the	Terraform	workAlow	and	CI/CD	pipeline,	with	
documentation	on	the	setup	and	process.	

- Monitoring	and	reporting	setup	for	compliance	checks,	including	dashboards,	alerts,	and	audit	
reports.	

===============================================================================	

Project:	Hybrid	Cloud	Network	Setup	

Project	Overview	:	

This	project	focuses	on	creating	a	secure	hybrid	cloud	network	that	connects	on-premises	
infrastructure	with	cloud	resources.	Students	will	leverage	VPN	(Virtual	Private	Network)	and/or	
Direct	Connect	(for	AWS),	ExpressRoute	(for	Azure),	or	Cloud	Interconnect	(for	Google	Cloud)	to	
establish	a	dedicated	networking	connection	that	allows	for	seamless	integration	between	on-
premises	data	centers	and	the	cloud.	This	setup	aims	to	demonstrate	the	practical	aspects	of	extending	
an	organization's	on-premises	network	into	the	cloud,	ensuring	secure	and	reliable	communication	
between	environments.	

Objective:	

Design	and	implement	a	hybrid	cloud	network	architecture	that	securely	connects	on-premises	
infrastructure	with	cloud	services,	demonstrating	knowledge	in	networking,	security,	and	cloud	
integration.	

Task	1:	Network	Planning	and	Design	

Objective:	Design	a	hybrid	network	architecture	that	meets	the	organization's	connectivity	and	
security	requirements.	

Activities:	

• Assess	the	current	on-premises	network	setup	and	identify	requirements	for	extending	to	the	cloud	
(e.g.,	bandwidth,	latency,	redundancy).	

Th
eO
psK
art



• Choose	between	VPN	and	Direct	Connect/ExpressRoute/Cloud	Interconnect	based	on	the	use	case,	
cost,	and	performance	needs.	

• DeAine	the	network	topology,	including	on-premises	gateways,	cloud	VPN	gateways/Direct	Connect	
endpoints,	and	the	IP	addressing	scheme.	

Task	2:	Setting	Up	Cloud	Environment	

Objective:	Prepare	the	cloud	environment	for	hybrid	connectivity.	

Activities:	

• Provision	a	Virtual	Private	Cloud	(VPC)	in	the	chosen	cloud	provider,	conAiguring	subnets,	route	
tables,	and	internet	gateways	as	needed.	

• Set	up	VPN	Gateway/Direct	Connect	Gateway/ExpressRoute/Cloud	Interconnect	in	the	cloud	VPC,	
following	the	provider's	guidelines	for	hybrid	connections.	

• ConAigure	cloud-side	routing	and	Airewall	rules	to	allow	trafAic	from	the	on-premises	network,	
ensuring	secure	access	to	cloud	resources.	

Task	3:	On-Premises	ConAiguration	

Objective:		ConAigure	the	on-premises	infrastructure	to	connect	to	the	cloud	environment.	

Activities:		

• Set	up	an	on-premises	VPN	device	or	conAigure	the	existing	network	infrastructure	for	Direct	
Connect/ExpressRoute/Cloud	Interconnect.	

• Establish	the	VPN	connection	or	set	up	the	dedicated	connection	with	the	cloud	gateway.	

• ConAigure	on-premises	Airewall	rules	and	routing	to	secure	and	direct	trafAic	to	the	cloud.	

Task	4:		Testing	and	Validation	

Objective:		Ensure	the	hybrid	network	is	correctly	conAigured	and	meets	connectivity	and	security	
requirements.	

Activities:		

• Perform	connectivity	tests	to	verify	the	network	path	between	on-premises	and	cloud	resources.	

• Validate	the	security	of	the	connection	by	testing	Airewall	rules	and	access	controls.	

• Conduct	performance	tests,	if	applicable,	to	ensure	the	connection	meets	bandwidth	and	latency	
requirements.	

Task	5:	Monitoring	and	Documentation	

Objective:		Implement	monitoring	solutions	for	the	hybrid	connection	and	document	the	architecture	
and	conAiguration	steps.	

Activities:		

• Set	up	monitoring	using	cloud	provider	tools	and	on-premises	network	monitoring	solutions	to	track	
the	health	and	performance	of	the	hybrid	connection.	

Th
eO
psK
art



• Document	the	network	architecture,	including	diagrams	and	detailed	conAiguration	settings	for	both	
cloud	and	on-premises	environments.	

• Create	a	troubleshooting	guide	covering	common	issues	and	solutions	related	to	the	hybrid	network	
setup.	

Deliverables:	

- A	detailed	network	architecture	diagram	showing	the	hybrid	cloud	setup.	

- ConAiguration	Ailes,	scripts,	or	command	lists	used	for	setting	up	the	cloud	environment	and	on-
premises	connection.	

- A	testing	report	summarizing	connectivity,	security,	and	performance	test	outcomes.	

- Monitoring	setup	details	and	operational	documentation,	including	a	network	management	and	
troubleshooting	guide.	

Th
eO
psK
art


	Advanced Terraform Course for Intermediate Students

