Course Overview:

This course aims to elevate the Terraform skills of intermediate-level students by covering advanced
concepts and hands-on practices in infrastructure as code. Students will explore advanced Terraform
features, best practices for scalable and maintainable Terraform code, and integrations with various
cloud providers and external tools. The course includes a blend of theoretical knowledge, practical
exercises, and real-world scenarios to prepare students for complex IaC tasks and challenges.

Module 1: Terraform State Management

* Deep dive into Terraform state files, backend configurations, and state locking.
* Strategies for state file troubleshooting and recovery.

Module 2: Modular Terraform Configurations

* Designing reusable and maintainable modules for common infrastructure patterns.
* Managing module versions and sources.
* Publishing and consuming modules in the Terraform Registry.

Module 3: Managing Multiple Environments

Best practices for structuring Terraform code to manage multiple environments (development,
staging, production).
[]

Utilizing workspaces and variable files to streamline environment management.

Module 4: Advanced Resource Lifecycle Management

* Understanding resource dependencies and lifecycle blocks.
* Implementing zero-downtime deployment strategies with Terraform.

Module 5: Dynamic Configurations

¢ Leveraging data sources and dynamic blocks to create flexible configurations.
¢ Advanced templating with Terraform.

Module 6: Integrating Terraform with Cloud-Native Services

Automating DNS configurations, serverless functions, and container orchestration services.

* C(Case studies on Terraform integration with AWS, Azure, and GCP services.

Module 7: Security and Compliance in Terraform

* Implementing secrets management in Terraform projects
* Using policy as code tools like Sentinel or OPA with Terraform for compliance checks

Module 8: Terraform Collaboration and Automation

* Collaborative workflows with Terraform Cloud and Terraform Enterprise

Automating Terraform runs with CI/CD pipelines

Module 9: Monitoring and Maintenance

* Collaborative workflows with Terraform Cloud and Terraform Enterprise

* Automating Terraform runs with CI/CD pipelines

Hands-on Projects

Project: Multi-Environment Web Application Deployment with Terraform
Project Overview:

This project aims to teach students how to use Terraform to deploy a scalable web application across
multiple environments (development, staging, and production) efficiently. The focus will be on
utilizing modular Terraform configurations to ensure code reusability and maintainability. Students
will learn to manage environment-specific configurations and understand the principles of
infrastructure as code (IaC) in practice.

Objective:

Develop and deploy a web application across multiple environments using Terraform, demonstrating
the ability to manage complex infrastructure deployments with modular and reusable code.

Task 1: Infrastructure Planning and Design

Objective: Design the overall architecture for the web application, identifying the resources needed for
each environment.

Activities:

» Define the core components of the web application architecture (e.g., web servers, databases, load
balancers).

« Identify the differences between environments (e.g., size of compute resources, database
configurations) and plan how to manage these variations with Terraform.

¢ Design a module structure that allows for reusability and manageability of Terraform code.
Task 2: Creating Terraform Modules

Objective: Develop Terraform modules that encapsulate different parts of the infrastructure.
Activities:

¢ Create a Terraform module for the compute resources, including configuration for autoscaling.

* Develop a database module that can be configured for different environments, ensuring data
isolation.

¢ Implement a networking module for setting up VPCs, subnets, and load balancers.

Task 3: Environment-Specific Configurations

Objective: Utilize Terraform workspaces and variable files to manage configurations unique to
development, staging, and production environments.

Activities:

¢ Set up Terraform workspaces for each environment to keep state files separate and organized.

¢ Create variable files (terraform.tfvars) for each environment, specifying environment-specific
‘“ configurations such as instance sizes, database versions, and resource tags.

‘\
| * Write conditionals within modules to adjust resource configurations based on the current workspace
or variables.

Task 4: Deploying to Multiple Environments

Objective: Execute Terraform plans to deploy the web application infrastructure across development,
staging, and production environments.

Activities:

¢ Use Terraform commands to initialize the environment, plan the deployment, and apply the
configuration for each workspace. f

» Validate the deployment in each environment, ensuring the infrastructure is correctly provisioned
and configured. [|

¢ Implement a rollback plan using Terraform to handle deployment failures or issues.
Task 5: Monitoring and Maintenance

Objective: Establish practices for monitoring, updating, and maintaining the infrastructure over time. ||
Activities:

.« Integrate cloud provider monitoring tools (e.g., AWS CloudWatch, Azure Monitor) to track the
performance and health of the application.

¢ Plan for regular Terraform code reviews and refactoring sessions to improve efficiency and reduce J
technical debt.

¢ Document the process for updating the Terraform configuration and redeploying infrastructure
changes across environments.

Deliverables:

- Aset of reusable Terraform modules representing the core components of the web application
infrastructure.

- Terraform workspace configurations and variable files for managing multiple environments.

- A comprehensive deployment guide detailing the steps to deploy and manage the web application |
across development, staging, and production environments using Terraform. |

- A monitoring and maintenance strategy to ensure the ongoing reliability and performance of the
web application infrastructure.

Project: Serverless Infrastructure Automation
Project Overview :

This project focuses on automating the deployment of a serverless application stack, utilizing cloud
services such as AWS Lambda, Azure Functions, or Google Cloud Functions. Students will learn to
leverage infrastructure as code (1aC) tools and practices to deploy a fully serverless architecture,

including functions, API gateways, and data stores. The project aims to provide hands-on experience
with serverless technologies and automation, highlighting the benefits of serverless architecture in
terms of scalability, cost, and maintenance.

Obijective:

Develop an automated deployment pipeline for a serverless application, demonstrating the ability to
integrate various serverless components and manage them through IaC.

Choose a Cloud Provider:

For the purpose of this description, we'll focus on AWS, but similar concepts can be applied to Azure or
Google Cloud with their respective services.

Task 1: Designing the Serverless Application
Objective: Outline the architecture and components of the serverless application.
Activities:

» Define the application's functionality and identify the AWS services needed (e.g., AWS Lambda for
compute, Amazon API Gateway for HTTP endpoints, Amazon DynamoDB for NoSQL data storage).

¢ Sketch an architecture diagram to visualize the components and data flow within the application.
Task 2: Preparing the Infrastructure as Code (1aC) Configuration

Objective: Utilize 1aC tools like AWS CloudFormation or Terraform to define the serverless
infrastructure.

Activities:

¢ Write CloudFormation templates or Terraform configurations to provision the necessary AWS
resources.

¢ Ensure the IaC configuration includes Lambda functions, API Gateway setup, DynamoDB tables, and
any necessary 1AM roles and policies for access control.

Task 3: Automating the Deployment Process

Objective: Implement an automated deployment pipeline using AWS CodePipeline or a similar CI/CD
tool.

Activities:

¢ Set up a source code repository (e.g.,, AWS CodeCommit, GitHub) and connect it to the deployment
pipeline.

* Configure the pipeline to trigger deployments automatically upon code commits or at scheduled
intervals.

 Integrate the [aC deployment step into the pipeline, ensuring that infrastructure updates are applied
as part of the deployment process.

Task 4: Testing and Validation

Objective: Ensure the serverless application functions correctly and meets performance expectations.

‘((Activities:
I‘ ¢ Develop unit and integration tests for the Lambda functions and the overall application.

‘ ¢ Use AWS CodeBuild or a similar service within the pipeline to run tests automatically.

» Perform load testing to validate the application's scalability and responsiveness under high traffic.

Task 5: Monitoring and Logging

Objective: Set up monitoring and logging to track the application's performance and troubleshoot
issues.

Activities:

¢ Configure Amazon CloudWatch Logs for Lambda functions and API Gateway to collect logs.

for anomalies.

« Utilize AWS X-Ray or similar services for tracing requests through the serverless components to
debug and optimize performance.

Deliverables:
- IaC configurations for provisioning the serverless application stack.
- A CI/CD pipeline configuration for automating the deployment process.

- Documentation covering the application architecture, deployment pipeline setup, and testing J
strategy. |

- A monitoring and logging setup that provides visibility into the application's health and |

¢ Set up CloudWatch Alarms to monitor key metrics (e.g., error rates, latency) and send notifications
performance.

Project: Container Orchestration with Terraform
Project Overview : ‘

This project focuses on leveraging Terraform to provision and manage a managed Kubernetes cluster,
such as Amazon EKS, Azure AKS, or Google GKE, and deploy a containerized application onto this
cluster. Students will gain practical experience with Terraform's capabilities for infrastructure as code
(IaC) to automate the deployment of containerized applications, emphasizing the orchestration,
scalability, and management of containers in a production-like environment.

Obijective:

Use Terraform to automate the provisioning of a managed Kubernetes service and deploy a multi-
component containerized application, demonstrating proficiency in managing container orchestration
platforms and deploying applications in a cloud-native ecosystem.

Task 1: Designing the Kubernetes Cluster Infrastructure

Objective: Plan the architecture for a managed Kubernetes cluster that will host the containerized
application.

Activities:

¢ Determine the requirements for the Kubernetes cluster, including node sizes, the number of nodes,
and specific configurations like auto-scaling, networking, and access controls.

* Choose a cloud provider's managed Kubernetes service (EKS, AKS, or GKE) based on the project
requirements or personal preference.

Task 2: Terraform Configuration for Kubernetes Cluster
Objective: Write Terraform configurations to provision the managed Kubernetes cluster.
Activities:

¢ Create Terraform configurations to define the managed Kubernetes service, including cluster and
node pool definitions with necessary configurations.

» Utilize provider-specific Terraform modules or resources to set up the cluster.

* Apply best practices for Terraform state management and modularization to organize the
infrastructure code.

Task 3: Deploying the Containerized Application

Objective: Define and deploy a multi-component containerized application onto the Kubernetes
cluster.

Activities:

¢ Containerize the application components if not already done, and push the Docker images to a
container registry (Docker Hub, ECR, ACR, or GCR).

» Create Kubernetes deployment and service manifests for each component of the application. These
can be defined directly in Terraform using the Kubernetes provider or managed separately with
kubectl.

¢ Use Terraform to apply the Kubernetes configurations, ensuring that the application components are

deployed and accessible within the cluster.
Task 4: Implementing Scalability and Monitoring
Objective: Configure auto-scaling for the application and set up basic monitoring and logging.
Activities:

» Configure Horizontal Pod Autoscaler (HPA) for the application deployments to automatically scale
the number of pods based on CPU usage or other metrics.

 Utilize the cloud provider's monitoring tools (CloudWatch, Azure Monitor, Google Operations) to set
up basic monitoring and logging for the Kubernetes cluster and application.

Task 5: Documentation and Cleanup
Objective: Document the deployment process and clean up resources.
Activities:

¢ Document the steps taken to provision the Kubernetes cluster and deploy the application, including
any commands run and Terraform configurations used.

* Provide instructions for accessing the deployed application and monitoring its performance.

¢ Qutline the steps for safely destroying the Terraform-managed resources to prevent unnecessary

cloud costs. l

Deliverables:

- Terraform configurations for provisioning a managed Kubernetes cluster and deploying a
containerized application.

- Kubernetes deployment and service manifests for the application components.

- Documentation covering the architecture design, deployment process, access instructions, and
cleanup procedures.

- Optional: A basic CI/CD pipeline definition for automating the application deployment process
through Terraform.

Project: Compliance as Code |

Project Overview :

This project aims to introduce students to the concept of "Compliance as Code" by integrating security
and governance policies directly into the infrastructure as code lifecycle using Terraform. Students will
learn how to define, enforce, and automate compliance checks for Terraform-managed resources,
ensuring that infrastructure deployments adhere to organizational and regulatory standards from the
outset.

Objective:

Develop a compliance as code framework within Terraform to automate the enforcement of security
and governance policies across all Terraform-managed resources, demonstrating an ability to integrate
compliance checks into the CI/CD pipeline for infrastructure deployments.

Task 1: Understanding Compliance Requirements

Objective: Identify and document specific compliance requirements relevant to the organization's
infrastructure deployments.

Activities:

¢ Collaborate with security and compliance teams to gather requirements and understand the
regulatory standards (e.g., GDPR, HIPAA, PCI-DSS) applicable to the infrastructure.

» Translate these requirements into specific, actionable policies that can be enforced through code
(e.g., encryption of data at rest and in transit, least privilege access control).

Task 2: Defining Compliance Policies

Objective: Define compliance policies as code using a policy-as-code framework compatible with
Terraform, such as Open Policy Agent (OPA) or HashiCorp Sentinel.

Activities:

» Write policy definitions that articulate the compliance requirements identified in Task 1. These
policies might include rules around tagging standards, encryption settings, and size limits for
resources.

* Ensure policies are version-controlled and maintained alongside Terraform configurations for
transparency and auditability.

Task 3: Integrating Compliance Checks into Terraform Workflow

Objective: Integrate the compliance policies into the Terraform workflow, automating policy
enforcement during infrastructure provisioning.

Activities:

« onfigure a pre-commit or pre-apply hook in the Terraform workflow that triggers policy evaluation
against the Terraform plan output.

¢ Use Terraform's external data source or integrate with the CI/CD pipeline to evaluate Terraform
plans against the defined policies before allowing deployment.

¢ Set up notifications for policy violations to alert the infrastructure team and block deployments that
do not comply with the policies.

Task 4: Automating Policy Enforcement in CI/CD

Objective: Automate the enforcement of compliance policies as part of the CI/CD pipeline for
infrastructure code.

Activities:

¢ Integrate compliance policy checks into the CI/CD pipeline, ensuring that every update to Terraform
configurations is automatically evaluated against the compliance policies before being applied.

» Configure the CI/CD pipeline to fail the build if policy violations are detected, requiring manual
review and adjustments.

* Document the process for reviewing and addressing policy violations, including steps for
remediation and exceptions handling.

(’ Task 5: Monitoring and Reporting

i Objective: Implement monitoring and reporting mechanisms for compliance posture and policy
violations.

Activities:

¢ Leverage tools like Terraform Cloud or Enterprise features, or integrate with third-party logging and
monitoring solutions to track and report on compliance checks and outcomes.

¢ Set up dashboards and reports that provide visibility into the compliance status of infrastructure
deployments, highlighting compliant resources and policy violations.

* Develop a process for regular compliance audits, leveraging the automated compliance checks and
reporting tools to streamline audit activities. d

Deliverables:

configurations.

- Integration of compliance checks into the Terraform workflow and CI/CD pipeline, with il
documentation on the setup and process. |

- Monitoring and reporting setup for compliance checks, including dashboards, alerts, and audit ‘
reports.

Project: Hybrid Cloud Network Setup |

|

[|

- A set of compliance policies defined as code, stored in version control alongside Terraform ‘
Project Overview : \

This project focuses on creating a secure hybrid cloud network that connects on-premises

infrastructure with cloud resources. Students will leverage VPN (Virtual Private Network) and/or

Direct Connect (for AWS), ExpressRoute (for Azure), or Cloud Interconnect (for Google Cloud) to
establish a dedicated networking connection that allows for seamless integration between on-

premises data centers and the cloud. This setup aims to demonstrate the practical aspects of extending
an organization's on-premises network into the cloud, ensuring secure and reliable communication
between environments. ‘

Objective:

Design and implement a hybrid cloud network architecture that securely connects on-premises
| infrastructure with cloud services, demonstrating knowledge in networking, security, and cloud
integration.

Task 1: Network Planning and Design

Objective: Design a hybrid network architecture that meets the organization's connectivity and
security requirements.

Activities:

* Assess the current on-premises network setup and identify requirements for extending to the cloud
(e.g., bandwidth, latency, redundancy).

F

/

¢ Choose between VPN and Direct Connect/ExpressRoute/Cloud Interconnect based on the use case,
cost, and performance needs.

!{

I
¢ Define the network topology, including on-premises gateways, cloud VPN gateways/Direct Connect
endpoints, and the IP addressing scheme.

Task 2: Setting Up Cloud Environment
Objective: Prepare the cloud environment for hybrid connectivity.

Activities:

* Provision a Virtual Private Cloud (VPC) in the chosen cloud provider, configuring subnets, route .
tables, and internet gateways as needed.

¢ Set up VPN Gateway/Direct Connect Gateway/ExpressRoute/Cloud Interconnect in the cloud VPC,
following the provider's guidelines for hybrid connections.

* Configure cloud-side routing and firewall rules to allow traffic from the on-premises network,
ensuring secure access to cloud resources.

Task 3: On-Premises Configuration
Objective: Configure the on-premises infrastructure to connect to the cloud environment. *
Activities:

* Set up an on-premises VPN device or configure the existing network infrastructure for Direct
Connect/ExpressRoute/Cloud Interconnect.

¢ Establish the VPN connection or set up the dedicated connection with the cloud gateway. }
» Configure on-premises firewall rules and routing to secure and direct traffic to the cloud.
Task 4: Testing and Validation

Objective: Ensure the hybrid network is correctly configured and meets connectivity and security
requirements.

Activities:
» Perform connectivity tests to verify the network path between on-premises and cloud resources.
 Validate the security of the connection by testing firewall rules and access controls.

¢ Conduct performance tests, if applicable, to ensure the connection meets bandwidth and latency |
requirements.

Task 5: Monitoring and Documentation

Objective: Implement monitoring solutions for the hybrid connection and document the architecture
and configuration steps.

Activities:

« Set up monitoring using cloud provider tools and on-premises network monitoring solutions to track
the health and performance of the hybrid connection.

/

¢ Document the network architecture, including diagrams and detailed configuration settings for both
cloud and on-premises environments.

 Create a troubleshooting guide covering common issues and solutions related to the hybrid network
setup.

Deliverables:

- A detailed network architecture diagram showing the hybrid cloud setup.

- Configuration files, scripts, or command lists used for setting up the cloud environment and on-
premises connection.

- Atesting report summarizing connectivity, security, and performance test outcomes.

- Monitoring setup details and operational documentation, including a network management and
troubleshooting guide.

	Advanced Terraform Course for Intermediate Students

