
Master Course on Cloud-Na0ve DevOps with Harness 

Module 1: Introduc0on to Harness and Cloud-Na0ve DevOps 

Topics: 
• Overview	of	Cloud-Native	DevOps	practices.	

• Introduction	to	Harness:	Key	features	and	bene>its.	

• Setting	up	Harness	for	the	>irst	time.Project:		Set	up	ArgoCD	in	a	Minikube	cluster.	

Module 2: Mul0-Cloud Deployments with Harness 

Topics: 
• Understanding	multi-cloud	strategies.	

• Con>iguring	Harness	for	AWS,	GCP,	and	Azure	deployments.	

Module 3: Advanced Deployment Strategies 

Topics: 
• Principles	of	blue/green	and	canary	deployments.	

• Implementing	zero-downtime	deployment	strategies	in	Harness.	

Module 4: Automated Tes0ng and Quality Gates 

Topics: 
• Integrating	testing	frameworks	with	CI/CD	pipelines.	

• Setting	up	pre-deployment	and	post-deployment	quality	gates	in	Harness.	

Module 5: Security in Con0nuous Deployment 

Topics: 
• Foundations	of	Secure	Deployments:	Understanding	the	security	challenges	in	continuous	

deployment	environments	and	the	principles	of	secure	by	design.	

• Secrets	Management	with	HashiCorp	Vault:	Deep	dive	into	using	HashiCorp	Vault	for	managing	
secrets,	keys,	and	tokens	securely.	Overview	of	Vault's	architecture,	authentication	methods,	and	
secret	engines.	

• Integrating	Harness	with	HashiCorp	Vault:	Step-by-step	guidance	on	con>iguring	Harness	to	
securely	fetch	secrets	from	HashiCorp	Vault,	enabling	secure	application	con>igurations	without	
exposing	sensitive	information	in	the	deployment	process.	

Th
eO
psK
art



• Encryption	and	Compliance:	Implementing	encryption	in	transit	and	at	rest,	understanding	
compliance	requirements	relevant	to	continuous	deployment,	and	how	to	meet	them.	

• Vulnerability	Scanning	and	Remediation:	Incorporating	automated	vulnerability	scanning	into	CI/
CD	pipelines,	interpreting	scan	results,	and	implementing	remediation	strategies.	

• Monitoring	and	Auditing	for	Security:	Setting	up	monitoring	and	auditing	mechanisms	to	detect	
security	incidents	early	and	conducting	post-incident	analyses	to	prevent	future	breaches.	

	

Module 6: Microservices Deployment Op0miza0on 

Topics: 
• Introduction	to	Microservices	Deployment	Challenges:	Overview	of	common	challenges	in	deploying	
and	managing	microservices,	including	service	discovery,	con>iguration	management,	and	inter-
service	communication.	

• Harness	for	Microservices	Deployment:	Utilizing	Harness	to	automate	and	manage	deployments	
across	microservices	architectures,	focusing	on	CI/CD	pipelines,	environment	variables,	and	
deployment	strategies	tailored	for	microservices.	

• Canary	Releases	in	Microservices:	Implementing	canary	releases	with	Harness	to	minimize	the	
impact	of	new	deployments	on	the	overall	system,	allowing	for	gradual	rollout	and	testing	in	
production-like	environments.	

• Service	Dependency	Management:	Strategies	for	managing	dependencies	between	microservices	
during	deployments,	including	versioning,	backward	compatibility,	and	database	schema	migrations.	

• Optimizing	Microservices	Deployments	with	Harness:	Best	practices	for	using	Harness	to	achieve	
ef>icient,	reliable,	and	scalable	deployments	of	microservices,	leveraging	features	such	as	blue/green	
deployments,	automated	rollbacks,	and	monitoring	integrations.	

Module 7: Monitoring and Observability 

Topics: 
• Foundations	of	Monitoring	and	Observability:	Differentiating	between	monitoring	and	

observability,	and	understanding	their	importance	in	modern	DevOps	practices.	

• Con>iguring	Monitoring	and	Logging	with	Harness:	Practical	guidance	on	setting	up	comprehensive	
monitoring	and	logging	for	applications	deployed	via	Harness,	using	tools	like	Prometheus,	
Grafana,	and	ELK	Stack.	

• Implementing	Observability	in	Deployments:	Techniques	for	achieving	deep	observability	into	
application	health,	performance,	and	user	experiences	through	distributed	tracing,	metrics	
collection,	and	log	aggregation.	

• Using	Observability	Data	to	Inform	Deployment	Strategies:	How	to	use	real-time	data	and	insights	
gathered	from	observability	tools	to	make	informed	decisions	about	deployment	frequencies,	
scaling,	and	rollback	mechanisms.	

Th
eO
psK
art



• Best	Practices	for	Observability:	Strategies	for	maintaining	an	effective	observability	stack,	
including	log	management	policies,	metric	selection,	and	visualization	techniques.	

Module 8: Scaling and Performance Tuning 

Topics: 
• Principles	of	Scalability	in	Cloud-Native	Applications:	Understanding	the	fundamentals	of	scaling	

applications	and	infrastructure	in	a	cloud-native	ecosystem,	including	horizontal	vs.	vertical	
scaling	and	the	role	of	microservices	and	serverless	architectures.	

• Automating	Scaling	with	Harness:	How	to	leverage	Harness	to	automate	the	scaling	of	applications	
and	infrastructure,	including	the	use	of	auto-scaling	groups,	containers	orchestration	platforms	
like	Kubernetes,	and	serverless	functions.	

• Performance	Tuning	Techniques:	Methods	for	tuning	the	performance	of	cloud-native	applications,	
focusing	on	optimizing	code,	leveraging	caching,	managing	resource	allocations,	and	minimizing	
latency.	

• Monitoring	and	Metrics	for	Scaling	Decisions:	Utilizing	monitoring	tools	and	metrics	to	make	
informed	scaling	decisions,	including	the	identi>ication	of	bottlenecks	and	performance	thresholds.	

• Best	Practices	for	Scaling	and	Performance	Tuning:	Strategies	to	ensure	effective	scaling	and	
performance	tuning,	including	continuous	testing,	load	balancing,	and	the	importance	of	a	
proactive	approach	to	performance	issues.	

Deliverables:	

- Comprehensive	lecture	notes	and	slides	for	each	module.	

- Step-by-step	guides	for	hands-on	projects.	

- Access	to	a	forum	for	Q&A	and	discussions.	

- Final	assessment	test	to	evaluate	understanding	and	practical	skills.	

Certi>icate	of	completion.	

This	course	structure	is	designed	to	provide	a	thorough	understanding	of	Harness,	from	basic	concepts	
to	advanced	practices,	with	a	strong	focus	on	real-world	applications	and	projects	that	prepare	
students	for	implementing	Harness	in	their	Production	environments	effectively.	

Hands-on Projects

Project	1:	Automating	Multi-Cloud	Deployments	with	Harness	
Problem	Statement:		

Th
eO
psK
art



In	today’s	rapidly	evolving	digital	landscape,	managing	deployments	across	multiple	cloud	
environments	can	be	challenging	due	to	varying	APIs,	services,	and	con>igurations.	As	a	Solution	
Architect	at	a	leading	software	company,	you're	tasked	with	leveraging	Harness	to	automate	and	
streamline	the	deployment	process	for	a	highly	available,	scalable	web	application	across	AWS,	GCP,	
and	Azure.	Your	objective	is	to	create	a	seamless	work>low	that	supports	consistent	deployments,	
enables	quick	rollbacks	in	case	of	issues,	and	maintains	high	reliability	and	uptime	across	different	
environments.	

Objective:	

Design	and	implement	an	automated	deployment	pipeline	using	Harness	that	deploys	a	multi-
container	application	across	AWS,	GCP,	and	Azure,	ensuring	high	availability,	scalability,	and	consistent	
con>iguration	across	cloud	providers.	

Task	Breakdown	

Task	1:	De>ining	the	Deployment	Architecture	

Objective:	Outline	the	multi-cloud	deployment	architecture	and	identify	the	components	of	the	web	
application	to	be	containerized	and	deployed.	

Activities:	

• Analyze	the	application	architecture	to	determine	the	microservices	to	be	deployed	and	their	
dependencies.	

• Design	a	deployment	strategy	that	includes	blue/green	or	canary	deployments	for	minimizing	
downtime	and	risk.	

Task	2:		Containerizing	the	Application	

Objective:	Prepare	the	application	for	deployment	by	creating	Docker	containers	for	each	microservice.	

Activities:	

• Write	Docker>iles	for	each	component	of	the	application,	ensuring	best	practices	for	security	and	
ef>iciency.	

• Build	and	push	the	Docker	images	to	a	container	registry	accessible	by	AWS,	GCP,	and	Azure.	

Task	3:	Con>iguring	Harness	for	Multi-Cloud	Deployments	

Objective:		Set	up	Harness	Continuous	Delivery	to	manage	deployments	across	multiple	cloud	
platforms.	

Activities:		

• Integrate	Harness	with	AWS,	GCP,	and	Azure,	setting	up	the	necessary	credentials	and	permissions	
for	accessing	resources.	

• De>ine	the	Harness	deployment	pipelines,	specifying	the	environments,	infrastructure	de>initions,	
and	deployment	strategies.	

Th
eO
psK
art



Task	4:	Implementing	Advanced	Deployment	Strategies	

Objective:		Utilize	Harness	to	implement	advanced	deployment	strategies	across	cloud	environments.	

Activities:		

• Con>igure	blue/green	deployments	in	Harness	to	enable	zero-downtime	updates	and	instant	
rollbacks.	

• Set	up	canary	deployment	work>lows	to	gradually	roll	out	changes	to	a	small	subset	of	users	before	a	
full-scale	launch.	

Task	5:	Monitoring	and	Optimization	

Objective:		Monitor	the	deployments	and	optimize	the	process	for	ef>iciency	and	reliability.	

Activities:		

• Integrate	Harness	with	monitoring	tools	like	Prometheus	or	Datadog	to	track	the	performance	of	
deployments.	

• Analyze	deployment	data	to	identify	bottlenecks	or	issues	and	re>ine	the	deployment	strategies	for	
better	performance	and	reliability.	

Deliverables:	

- A	comprehensive	multi-cloud	deployment	work>low	implemented	in	Harness,	complete	with	
documentation	on	the	setup,	con>iguration,	and	deployment	strategies.	

- Docker>iles	and	CI/CD	con>igurations	for	the	application,	demonstrating	best	practices	in	
containerization	and	automated	deployments.	

- A	report	on	the	deployment	performance	across	different	cloud	environments,	including	insights	on	
reliability,	uptime,	and	areas	for	optimization.	

===============================================================================	

Project	2:	Implementing	Blue/Green	Deployments	for	Zero-Downtime	
Updates	
Problem	Statement:	

You	are	a	DevOps	Engineer	tasked	with	implementing	a	blue/green	deployment	strategy	for	a	critical	
production	service	using	Harness.	The	project	involves	automating	the	infrastructure	provisioning,	
application	deployment,	and	traf>ic	switching	to	ensure	zero	downtime	during	updates.	The	ability	to	
quickly	revert	to	the	previous	version	is	paramount	in	case	issues	arise	during	the	deployment.	

Objective:	

Design	and	execute	a	blue/green	deployment	strategy	using	Harness	to	automate	the	entire	process	for	
a	critical	production	service,	ensuring	seamless	updates	and	instant	rollback	capabilities.	

Task	Breakdown	

Th
eO
psK
art



Task	1:	Infrastructure	Provisioning	

Objective:	Automatically	provision	and	con>igure	the	necessary	infrastructure	for	both	blue	and	green	
environments.	

Activities:	

• Use	Harness'	Infrastructure	as	Code	capabilities	to	de>ine	infrastructure	requirements.	

• Automate	the	provisioning	of	identical	production	environments	(blue/green)	using	cloud	services.	

Task	2:	Application	Deployment	Automation	

Objective:	Set	up	Harness	pipelines	for	automated	application	deployments	to	blue/green	
environments.	

Activities:	

• Con>igure	application	services	in	Harness,	specifying	deployment	artifacts	and	parameters.	

• Create	deployment	pipelines	in	Harness,	integrating	pre-deployment	approvals	and	automated	tests.	

Task	3:	Traf>ic	Management	and	Switching	

Objective:		Implement	traf>ic	management	to	switch	between	blue	and	green	environments	seamlessly.	

Activities:		

• Utilize	Harness’	traf>ic	management	features	to	control	the	>low	of	user	traf>ic	to	the	new	(green)	
environment.	

• De>ine	criteria	and	automated	checks	that	trigger	the	switch	from	blue	to	green.	

Task	4:	Rollback	Mechanism	

Objective:		Establish	an	automated	rollback	process	to	the	previous	version	in	case	of	deployment	
failure.	

Activities:		

• Con>igure	automatic	rollback	in	Harness	based	on	prede>ined	failure	criteria	or	manual	intervention.	

• Test	the	rollback	process	to	ensure	quick	reversion	to	the	blue	environment	if	needed.	

Deliverables:	

- A	comprehensive	report	detailing	the	setup	and	execution	of	the	blue/green	deployment	strategy,	
including	infrastructure	provisioning,	application	deployment	automation,	traf>ic	management,	and	
rollback	mechanism	using	Harness.	

- Documentation	of	the	Harness	con>igurations,	pipeline	de>initions,	and	criteria	for	traf>ic	switching	
and	rollback.	

- Analysis	of	the	deployment	process,	highlighting	the	bene>its	of	blue/green	deployments	in	
maintaining	service	availability	and	user	experience.	

Th
eO
psK
art



Project	3:	Integrating	Automated	Testing	and	Quality	Gates	with	Harness	
Problem	Statement	:	

In	an	effort	to	enhance	the	software	development	lifecycle	for	a	FinTech	application,	you,	as	a	DevOps	
engineer,	are	tasked	with	integrating	automated	testing	and	quality	gates	within	the	CI/CD	pipeline.	
Using	Harness,	you	must	ensure	that	code	deployments	to	production	are	of	the	highest	quality,	
meeting	strict	regulatory	standards	and	customer	expectations.	

Objective:	

Implement	an	end-to-end	CI/CD	pipeline	in	Harness	that	integrates	automated	testing	frameworks	and	
establishes	quality	gates	to	ensure	that	only	high-quality	code	is	deployed	to	production.	

Task	Breakdown	

Task	1:		Integrating	Automated	Testing	Frameworks	

Objective:	Seamlessly	integrate	automated	testing	frameworks	into	the	CI/CD	pipeline.	

Activities:	

• Con>igure	Harness	to	trigger	automated	unit	and	integration	tests	using	preferred	frameworks	(e.g.,	
JUnit	for	Java	applications)	after	every	commit.	

• Set	up	environment-speci>ic	con>igurations	to	run	end-to-end	tests	in	a	staging	environment.	

Task	2:	Establishing	Pre-deployment	Quality	Gates	

Objective:	Create	pre-deployment	quality	gates	in	Harness	to	evaluate	code	quality	before	production	
deployment.	

Activities:	

• De>ine	criteria	for	passing	the	quality	gates,	including	test	coverage	thresholds,	static	code	analysis	
metrics,	and	security	scan	results.	

• Con>igure	Harness	to	automatically	halt	deployments	if	the	code	fails	to	meet	the	quality	gate	
criteria.	

Task	3:	Implementing	Post-deployment	Quality	Gates	

Objective:		Set	up	post-deployment	quality	gates	to	monitor	application	health	and	performance	in	
production.	

Activities:		

• Utilize	Harness	to	monitor	key	performance	indicators	(KPIs)	and	user	feedback	post-deployment.	

• Establish	automated	rollback	mechanisms	triggered	by	post-deployment	gate	failures,	such	as	
performance	degradation	or	increased	error	rates.	

Task	4:	Feedback	Loops	and	Continuous	Improvement	

Objective:		Utilize	testing	and	quality	gate	results	to	foster	continuous	improvement	in	code	quality.	

Th
eO
psK
art



Activities:		

• Set	up	noti>ications	and	dashboards	in	Harness	to	provide	developers	with	immediate	feedback	on	
test	failures	and	quality	gate	outcomes.	

• Facilitate	regular	review	sessions	to	discuss	the	outcomes	and	plan	improvements.	

Deliverables:	

• A	fully	functional	CI/CD	pipeline	in	Harness	that	integrates	automated	testing	and	enforces	quality	
gates.	

• Documentation	detailing	the	setup	process,	testing	framework	integrations,	quality	gate	criteria,	and	
feedback	mechanisms.	

• An	analysis	report	summarizing	the	impact	of	integrated	testing	and	quality	gates	on	code	quality	
and	deployment	reliability.	

• This	project	within	Module	4	equips	students	with	practical	experience	in	enhancing	CI/CD	pipelines	
with	automated	testing	and	quality	gates	using	Harness.	By	completing	this	project,	students	will	
learn	how	to	maintain	high	standards	of	code	quality,	ensuring	reliable	and	ef>icient	software	
delivery.	

===============================================================================		

Project	4:	Automated	Testing	and	Quality	Gates	

Objective:	

This	module	delves	into	the	critical	practice	of	incorporating	automated	testing	within	the	CI/CD	
pipeline	to	ensure	that	every	code	change	is	validated	before	being	deployed.	Students	will	learn	how	
to	integrate	various	testing	frameworks	with	Harness	and	set	up	both	pre-deployment	and	post-
deployment	quality	gates	to	maintain	high	standards	of	code	quality	and	application	reliability.	

Topics	Covered:	

• Introduction	to	Automated	Testing	in	CI/CD:	Importance	of	automated	testing,	types	of	tests	(unit,	
integration,	end-to-end).	

• Integrating	Testing	Frameworks:	Techniques	for	integrating	testing	frameworks	(e.g.,	JUnit,	
Selenium,	Jest)	with	CI/CD	pipelines	in	Harness.	

• Quality	Gates	in	Harness:	Setting	up	pre-deployment	and	post-deployment	quality	gates	in	Harness	
to	automatically	enforce	code	quality	standards.	

• Feedback	Loops	for	Continuous	Improvement:	Utilizing	test	results	and	quality	gate	outcomes	to	
create	feedback	loops	for	developers,	enhancing	code	quality	over	time.	

===============================================================================	

Th
eO
psK
art



Project	5:	Enhancing	Deployment	Security	with	Harness	and	HashiCorp	
Vault	

Overview:	

This	module	addresses	the	critical	importance	of	security	in	the	continuous	deployment	process,	
focusing	on	best	practices	for	secure	deployments	and	the	integration	of	Harness	with	HashiCorp	Vault	
for	secure	secret	management.	Students	will	learn	how	to	safeguard	deployment	pipelines	and	
maintain	con>identiality,	integrity,	and	availability	of	services	throughout	the	CI/CD	process.	

Problem	Statement	:	

As	a	Security	Engineer	at	a	>inancial	technology	company,	you	are	tasked	with	enhancing	the	security	
of	the	application	deployment	process.	The	current	CI/CD	pipeline	lacks	robust	secret	management	
and	exposes	sensitive	data,	posing	signi>icant	security	risks.	Your	goal	is	to	integrate	Harness	with	
HashiCorp	Vault	to	secure	the	management	and	usage	of	secrets	across	the	deployment	lifecycle,	
ensuring	that	sensitive	information	is	handled	securely	and	in	compliance	with	>inancial	industry	
regulations.	

Objective:	

Implement	a	secure	continuous	deployment	pipeline	using	Harness	integrated	with	HashiCorp	Vault,	
focusing	on	secure	secret	management	and	adherence	to	security	best	practices.	

Task	Breakdown	

Task	1:		Setting	Up	HashiCorp	Vault	

Objective:	Deploy	and	con>igure	HashiCorp	Vault	as	the	central	secrets	management	solution.	

Activities:	

• Install	and	initialize	HashiCorp	Vault,	con>iguring	it	for	high	availability	and	secure	access.	

• De>ine	policies	and	roles	in	Vault	to	control	access	to	secrets	based	on	the	principle	of	least	privilege.	

Task	2:	Integrating	Vault	with	Harness	

Objective:	Con>igure	Harness	to	securely	retrieve	secrets	from	HashiCorp	Vault	for	deployment	
processes.	

Activities:	

• Establish	a	secure	connection	between	Harness	and	Vault	using	Vault's	authentication	methods.	

• Modify	the	Harness	deployment	pipelines	to	fetch	secrets	from	Vault	dynamically	at	runtime,	
eliminating	the	need	to	store	sensitive	data	in	source	code	or	CI/CD	con>igurations.	

Task	3:	Implementing	Encryption	and	Compliance	Measures	

Objective:		Ensure	encryption	of	sensitive	data	in	transit	and	at	rest,	aligning	with	compliance	
standards.	

Activities:		

• Con>igure	TLS	for	all	communications	between	Harness,	Vault,	and	the	deployment	environments.	

Th
eO
psK
art



• Implement	data	encryption	in	Vault	and	ensure	deployment	artifacts	are	encrypted	at	rest.	

Task	4:	Vulnerability	Management	

Objective:		Integrate	vulnerability	scanning	tools	into	the	CI/CD	pipeline,	ensuring	continuous	security	
assessment.	

Activities:		

• Select	and	integrate	a	vulnerability	scanning	tool	with	the	Harness	pipeline	to	scan	code	and	
dependencies	for	known	vulnerabilities.	

• Set	up	noti>ications	and	automate	the	triage	process	for	addressing	identi>ied	vulnerabilities.	

Task	5:	Security	Monitoring	and	Auditing	

Objective:		Establish	comprehensive	security	monitoring	and	auditing	for	the	deployment	process.	

Activities:		

• Integrate	security	monitoring	tools	to	track	and	analyze	deployment	activities	for	suspicious	
behavior.	

• Con>igure	Vault's	audit	log	to	record	secret	accesses	and	authentication	events,	enabling	detailed	
auditing	and	compliance	reporting.	

Deliverables:	

- A	secure	CI/CD	pipeline	con>iguration	that	integrates	Harness	with	HashiCorp	Vault	for	secret	
management,	complete	with	documentation	on	setup	and	operations.	

- Guidelines	and	con>igurations	for	encryption,	compliance	adherence,	and	vulnerability	management	
within	the	CI/CD	process.	

- A	monitoring	and	auditing	framework	that	provides	visibility	into	security	events	and	compliance	
with	regulatory	standards.	

- This	project	within	Module	5	prepares	students	to	tackle	security	challenges	in	continuous	
deployment,	ensuring	they	can	build	secure,	compliant,	and	ef>icient	CI/CD	pipelines	for	modern	
cloud-native	applications.	

Project	6:	Optimizing	Microservices	Deployment	with	Harness	

Overview	

In	this	module,	students	will	explore	the	complexities	and	challenges	associated	with	deploying	
microservices	architectures,	focusing	on	how	Harness	can	streamline	and	optimize	these	processes.	
The	course	will	cover	strategic	approaches	to	managing	service	dependencies,	implementing	canary	
releases,	and	utilizing	Harness's	features	to	enhance	the	deployment	lifecycle	of	microservices.	

Problem	Statement:	

Th
eO
psK
art



As	a	DevOps	Engineer	at	a	technology	company	with	a	complex	microservices	architecture	for	its	
>lagship	product,	you	encounter	various	challenges	in	deploying	updates	and	new	features	ef>iciently.	
The	current	deployment	process	is	manual,	error-prone,	and	lacks	the	capability	to	manage	service	
dependencies	effectively.	Your	objective	is	to	leverage	Harness	to	optimize	the	deployment	process,	
implement	canary	releases	for	safer	rollouts,	and	manage	service	dependencies	seamlessly.	

Objective:	

Design	and	implement	an	optimized	deployment	process	for	a	microservices-based	application	using	
Harness,	incorporating	canary	releases	and	effective	service	dependency	management	to	ensure	
smooth,	reliable	updates.	

Task	Breakdown	

Task	1:		Con>iguring	Harness	for	Microservices	Deployment	

Objective:	Set	up	Harness	to	manage	deployments	across	a	microservices	architecture.	

Activities:	

• De>ine	microservices	in	Harness	as	individual	applications	or	services,	con>iguring	CI/CD	pipelines	
for	each.	

• Set	up	environment	con>igurations	in	Harness	to	handle	different	stages	of	the	deployment	process,	
from	development	to	production.	

Task	2:	Implementing	Canary	Releases	

Objective:	Utilize	Harness	to	implement	canary	release	strategies	for	microservices.	

Activities:	

• Con>igure	canary	deployment	strategies	in	Harness	for	critical	microservices,	specifying	criteria	for	
gradual	traf>ic	shifting	and	monitoring.	

• Integrate	monitoring	tools	with	Harness	to	track	the	performance	of	canary	releases,	setting	
thresholds	for	automatic	rollback	or	progression.	

Task	3:	Managing	Service	Dependencies	

Objective:		Develop	a	strategy	for	managing	dependencies	between	microservices	during	deployments..	

Activities:		

• Utilize	Harness	to	orchestrate	deployment	sequences	that	respect	service	dependencies,	ensuring	no	
service	is	deployed	without	its	dependencies	being	in	the	correct	state.	

• Implement	versioning	strategies	for	APIs	and	shared	libraries	to	maintain	compatibility	across	
services.	

Th
eO
psK
art



Task	4:	Deployment	Optimization	and	Monitoring	

Objective:		Optimize	the	deployment	process	and	set	up	comprehensive	monitoring.	

Activities:		

• Leverage	Harness	features	such	as	automated	rollbacks,	environment	variables,	and	secret	
management	to	optimize	deployments.	

• Con>igure	Harness	to	use	integrated	monitoring	solutions	to	track	deployment	success	and	
microservices	health	post-deployment.	

	

Deliverables:	

- A	streamlined	deployment	process	for	a	microservices	architecture,	fully	managed	by	Harness,	with	
detailed	documentation	on	the	con>iguration	and	setup.	

- Implementation	of	canary	releases	for	selected	microservices,	including	criteria	for	evaluation	and	
rollback	mechanisms.	

- A	comprehensive	strategy	for	managing	service	dependencies	during	deployments,	ensuring	high	
availability	and	compatibility.	

- An	analysis	report	on	the	deployment	optimization	efforts,	highlighting	improvements	in	
deployment	speed,	reliability,	and	system	stability.	

- This	project	equips	students	with	practical	skills	in	deploying	and	managing	microservices	
architectures	using	Harness,	focusing	on	deployment	optimization,	canary	releases,	and	service	
dependency	management	to	address	the	unique	challenges	of	microservices.	

===============================================================================	

Project	7:	Monitoring	and	Observability	

Overview:	

This	module	dives	into	the	essential	practices	of	monitoring	and	observability	within	cloud-native	
deployments,	emphasizing	the	role	these	practices	play	in	ensuring	application	performance	and	
reliability.	Through	detailed	exploration	of	con>iguring	monitoring	and	logging	with	Harness	and	
leveraging	observability	to	re>ine	deployment	strategies,	students	will	learn	to	implement	a	proactive	
approach	to	application	management	in	dynamic	environments.	

Problem	Statement	:	

As	a	DevOps	engineer	at	an	e-commerce	platform	experiencing	rapid	growth,	you	are	faced	with	the	
challenge	of	ensuring	optimal	performance	and	reliability	of	the	platform,	especially	during	peak	
shopping	seasons.	The	current	monitoring	setup	provides	limited	insight	into	system	performance	and	
user	experience,	making	it	dif>icult	to	anticipate	and	react	to	issues	proactively.	Your	task	is	to	enhance	
the	deployment	process	with	advanced	observability	tools	integrated	with	Harness,	enabling	real-time	
visibility	into	the	application's	health	and	performance	across	all	deployment	stages.	

Th
eO
psK
art



Objective:	

Implement	an	observability	framework	using	Harness	that	provides	deep	insights	into	application	
performance,	user	experience,	and	system	health,	utilizing	this	data	to	optimize	deployment	strategies	
for	enhanced	reliability	and	performance.	

Task	Breakdown	

Task	1:		Con>iguring	Monitoring	and	Logging	

Objective:	Set	up	a	comprehensive	monitoring	and	logging	system	for	the	application	deployed	through	
Harness.	

Activities:	

• Integrate	Prometheus	and	Grafana	with	Harness	for	metric	collection	and	visualization.	

• Con>igure	centralized	logging	using	the	ELK	Stack	(Elasticsearch,	Logstash,	Kibana)	to	aggregate	logs	
from	various	services	and	deployments.	

Task	2:	Implementing	Application	Observability	

Objective:	Achieve	in-depth	observability	into	the	application's	operational	health.	

Activities:	

• Implement	distributed	tracing	with	tools	like	Jaeger	or	Zipkin	to	trace	requests	across	microservices.	

• Set	up	application	performance	monitoring	(APM)	to	track	and	analyze	user	transactions	and	
interactions.	

Task	3:	Utilizing	Observability	Data	for	Deployment	Decisions	

Objective:		Use	observability	data	to	inform	and	re>ine	deployment	strategies.	

Activities:		

• Develop	a	dashboard	in	Grafana	that	displays	key	performance	indicators	(KPIs)	relevant	to	
deployment	decisions,	such	as	response	times,	error	rates,	and	throughput.	

• Establish	alerts	based	on	thresholds	that	indicate	potential	issues,	integrating	them	with	the	
deployment	process	in	Harness	to	trigger	automatic	scaling,	rollbacks,	or	canary	deployments..	

Task	4:	Best	Practices	and	Continuous	Improvement	

Objective:		Implement	best	practices	for	observability	and	use	insights	for	continuous	improvement.	

Activities:		

• Document	observability	best	practices,	including	log	management	policies	and	metric	selection.	

• Conduct	regular	reviews	of	observability	data	to	identify	trends,	anticipate	potential	issues,	and	plan	
for	capacity	adjustments.	

Th
eO
psK
art



Deliverables:	

- A	detailed	implementation	plan	and	documentation	for	setting	up	monitoring,	logging,	and	
observability	with	Harness.	

- Customized	dashboards	and	alerting	con>igurations	that	provide	real-time	insights	into	application	
health	and	performance.	

- A	report	outlining	how	observability	data	has	informed	deployment	strategies,	including	examples	
of	improvements	in	application	reliability	and	performance.	

===============================================================================	

Project	8:	Optimizing	a	High-TrafUic	Web	Application	with	Harness	

Overview:	

This	module	focuses	on	the	strategies	and	techniques	required	to	effectively	scale	and	tune	the	
performance	of	cloud-native	applications.	Emphasizing	the	use	of	Harness	for	automating	scaling	
actions	and	performance	tuning	tasks,	students	will	learn	how	to	ensure	applications	not	only	meet	
current	demands	but	are	also	prepared	for	future	growth	and	performance	expectations.	

Problem	Statement	:	

As	the	lead	DevOps	engineer	for	a	high-traf>ic	web	application,	you're	encountering	challenges	in	
meeting	the	performance	and	scalability	demands	during	peak	usage	times.	The	application	
experiences	slow	response	times	and	occasional	downtime,	affecting	user	satisfaction	and	revenue.	
Your	goal	is	to	utilize	Harness	to	automate	scaling	actions	and	apply	performance	tuning	techniques	to	
enhance	the	application's	scalability	and	overall	performance.	

Objective:	

Develop	and	implement	a	comprehensive	strategy	for	scaling	and	performance	tuning	of	a	high-traf>ic	
web	application	using	Harness,	ensuring	the	application	can	handle	peak	loads	ef>iciently	while	
maintaining	optimal	performance.	

Task	Breakdown	

Task	1:		Assessing	Current	Scalability	and	Performance	

Objective:	Analyze	the	current	application	architecture	and	performance	bottlenecks.	

Activities:	

• Conduct	a	thorough	assessment	of	the	application's	architecture,	identifying	areas	where	
performance	and	scalability	are	limited.	

• Utilize	performance	monitoring	tools	to	pinpoint	speci>ic	bottlenecks	in	the	application's	codebase,	
infrastructure,	and	dependencies.	

Task	2:	Implementing	Automated	Scaling	with	Harness	

Objective:	Automate	the	application	and	infrastructure	scaling	process	using	Harness.	

Th
eO
psK
art



Activities:	

• Con>igure	Harness	to	manage	the	deployment	of	scalable	resources,	such	as	Kubernetes	pods	or	
serverless	functions,	based	on	real-time	demand.	

• Set	up	auto-scaling	policies	within	Harness	that	dynamically	adjust	resources	during	peak	and	off-
peak	periods	to	optimize	costs	and	performance.	

Task	3:	Performance	Tuning	of	the	Application	

Objective:		Apply	performance	tuning	techniques	to	improve	application	ef>iciency.	

Activities:		

• Optimize	application	code	and	database	queries	to	reduce	latency	and	improve	response	times.	

• Implement	caching	strategies	and	content	delivery	networks	(CDN)	to	decrease	load	times	for	static	
and	frequently	accessed	content.	

Task	4:	Monitoring,	Testing,	and	Re>inement	

Objective:		Establish	a	continuous	improvement	cycle	for	scalability	and	performance.	

Activities:		

• Enhance	monitoring	setups	to	track	the	impact	of	scaling	and	performance	tuning	efforts,	focusing	
on	key	performance	indicators	(KPIs).	

• Conduct	stress	and	load	testing	to	validate	the	application's	improved	scalability	and	performance	
under	simulated	peak	conditions.	

• Iterate	on	scaling	strategies	and	performance	optimizations	based	on	testing	outcomes	and	
monitoring	insights.	

Deliverables:	

- A	detailed	strategy	and	implementation	guide	for	scaling	and	performance	tuning	the	web	
application	using	Harness,	including	con>igurations	and	policies	for	automated	scaling.	

- Documentation	of	performance	optimizations	applied	to	the	application	and	infrastructure,	with	
before-and-after	performance	metrics.	

- Reports	from	monitoring	and	testing	phases	that	demonstrate	the	application's	improved	ability	to	
handle	peak	loads	and	deliver	an	optimal	user	experience.	

EACH PROJECT IS DESIGNED TO SIMULATE SCENARIOS THAT PROFESSIONALS MIGHT 
ENCOUNTER IN REAL-WORLD SETTINGS, ALLOWING STUDENTS TO APPLY THEIR KNOWLEDGE 
OF HARNESS AND GITOPS PRINCIPLES TO SOLVE PRACTICAL PROBLEMS. 

Th
eO
psK
art


	Master Course on Cloud-Native DevOps with Harness

