
Advanced Azure Services Course for Intermediate Students 

Module 1: Advanced Compute Solu:ons 
• Deep	dive	into	Azure	Kubernetes	Service	(AKS),	including	cluster	management,	scaling,	and	

networking.	

• Advanced	features	of	Azure	Functions	for	serverless	computing.	

• Implementing	Azure	Container	Instances	for	lightweight	container	deployment.	

Module 2: Networking in Azure 
• Advanced	virtual	networking	concepts,	including	Azure	ExpressRoute	for	dedicated	connectivity.	

• Implementing	and	managing	Azure	VPN	Gateway	and	Azure	Application	Gateway.	

• Network	security	groups	and	Application	Security	Groups	(ASG)	best	practices.	

Module 3: Azure Storage Solu:ons 
• Implementing	and	managing	Azure	Blob	Storage,	including	access	tiers	and	lifecycle	management.	

• Advanced	conLiguration	of	Azure	File	Sync	and	Azure	Files	for	hybrid	scenarios.	

• Understanding	and	implementing	Azure	Data	Lake	Storage	Gen2	features.	

Module 4: Azure Database Services 
• Advanced	management	and	scaling	strategies	for	Azure	SQL	Database.	

• Implementing	Azure	Cosmos	DB	for	global	distribution	and	multi-model	database	solutions.	

• Overview	of	Azure	Database	for	MySQL,	PostgreSQL,	and	MariaDB	for	open-source	database	
management.	

Module 5: Security and Iden:ty 
• Implementing	and	managing	Azure	Active	Directory	(Azure	AD)	for	advanced	scenarios.	

• Azure	Key	Vault	for	secrets	management	and	application	security.	

• Advanced	threat	protection	with	Azure	Sentinel	and	Azure	Security	Center.	

Module 6: DevOps and CI/CD 
• Implementing	Azure	DevOps	for	continuous	integration	and	continuous	deployment	(CI/CD)	

pipelines.	

• Utilizing	Azure	Artifacts	and	Azure	Repos	for	source	control	and	artifact	management.	

• Best	practices	for	DevOps	culture	and	automation	in	Azure.	

Th
eO
psK
art



Hands-on Projects

Project:	Deploying	a	Multi-Container	Application	with	AKS	
Project	Overview:		

This	project	focuses	on	deploying	a	multi-container	application	using	Azure	Kubernetes	Service	(AKS).	
The	application	will	be	a	microservices-based	architecture,	where	each	microservice	runs	in	its	own	
container.	Students	will	learn	to	conLigure	autoscaling	to	manage	the	application's	load	efLiciently	and	
set	up	monitoring	to	maintain	high	availability	and	performance.	

Objective:	

Deploy	a	scalable	and	monitored	multi-container	application	on	AKS,	demonstrating	proLiciency	in	
managing	containerized	applications	and	Kubernetes	resources	on	Azure.	

Task	1:	Setting	Up	AKS	

Objective:	Create	and	conLigure	an	AKS	cluster	to	host	the	multi-container	application.	

Activities:	

• Use	the	Azure	CLI	or	Azure	portal	to	create	an	AKS	cluster	with	the	required	conLiguration	(node	
size,	count,	etc.).	

• ConLigure	kubectl	to	connect	to	your	AKS	cluster.	

Task	2:	Containerizing	the	Application	

Objective:	Prepare	the	application	for	deployment	by	containerizing	the	microservices.	

Activities:	

• Write	DockerLiles	for	each	microservice	component	of	the	application.	

• Build	Docker	images	and	push	them	to	Azure	Container	Registry	(ACR).	

Task	3:	Deploying	the	Application	to	AKS	

Objective:		Deploy	the	containerized	application	to	the	AKS	cluster.	

Activities:		

• Create	Kubernetes	deployment	and	service	YAML	Liles	for	each	microservice.	

• Deploy	the	application	to	AKS	using	kubectl,	ensuring	each	microservice	is	correctly	exposed	and	can	
communicate	with	others	within	the	cluster.	

Task	4:	Implementing	Autoscaling	

Objective:		ConLigure	horizontal	pod	autoscaler	(HPA)	and	cluster	autoscaler	for	the	AKS	cluster.	

Activities:		

• Set	up	HPA	to	automatically	scale	the	number	of	pods	in	a	deployment	based	on	observed	CPU	
utilization	or	other	selected	metrics.	

Th
eO
psK
art



• ConLigure	the	cluster	autoscaler	to	adjust	the	number	of	nodes	in	the	cluster	based	on	the	needs	of	
the	workloads.	

Task	5:	Setting	Up	Monitoring	and	Alerts	

Objective:		Implement	monitoring	for	the	AKS	cluster	and	the	deployed	application	to	ensure	its	health	
and	performance.	

Activities:		

Implement	security	groups	and	IAM	policies	to	control	access	to	AWS	resources.Use	AWS	Shield	and	
AWS	WAF	to	protect	cloud	resources	from	DDoS	attacks	and	web	exploits.	Conduct	a	security	
assessment	to	identify	potential	vulnerabilities	and	apply	necessary	patches	or	conLiguration	changes.	

Task	6:	Monitoring	and	Optimization	

Objective:		Set	up	monitoring	for	the	hybrid	cloud	environment	and	optimize	for	performance	and	cost.	

Activities:		

• Enable	Azure	Monitor	for	containers	to	collect	metrics	and	logs	from	the	AKS	cluster	and	containers.	

• Set	up	dashboards	in	Azure	Monitor	to	visualize	key	performance	metrics.	

• ConLigure	alerts	for	critical	conditions	like	high	CPU/memory	usage,	pod	failures,	or	service	
downtime.	

Deliverables:	

- Detailed	architecture	diagrams	and	deployment	plans.	

- ConLiguration	Liles,	scripts,	and	commands	used	throughout	the	project	tasks.	

- A	monitoring	and	alerting	setup	with	customized	dashboards	and	alert	

===============================================================================	

Project:	Hybrid	Cloud	Connectivity	with	Azure	ExpressRoute	
Project	Overview	:	

In	this	project,	students	will	establish	hybrid	cloud	connectivity	using	Azure	ExpressRoute,	connecting	
an	on-premises	network	to	Azure.	This	setup	will	simulate	a	real-world	scenario	where	businesses	
require	a	dedicated,	private	connection	between	their	data	center	and	the	cloud	for	improved	
bandwidth,	reliability,	and	security.	

Objective:	

Create	a	secure	and	reliable	hybrid	cloud	environment	by	establishing	connectivity	between	an	on-
premises	network	and	Azure	using	ExpressRoute.	

Task	1:	Planning	and	Design	

Objective:	Design	a	hybrid	network	architecture	that	integrates	on-premises	infrastructure	with	Azure	
services.	

Activities:	

• Assess	the	on-premises	network	setup	and	requirements	for	cloud	connectivity.	

Th
eO
psK
art



• Plan	the	ExpressRoute	circuit,	including	peering	locations	and	bandwidth.	

Task	2:	Provisioning	ExpressRoute	

Objective:	Provision	an	ExpressRoute	circuit	and	establish	a	connection	to	Azure.	

Activities:	

• Use	the	Azure	portal	to	create	an	ExpressRoute	circuit	and	select	a	connectivity	provider.	

• Work	with	the	connectivity	provider	to	provision	the	physical	connection.	

• ConLigure	peering	for	the	ExpressRoute	circuit,	including	Azure	private	peering	and	Microsoft	
peering	as	required.	

Task	3:	ConLiguring	On-Premises	Connectivity	

Objective:		Set	up	the	on-premises	network	to	connect	to	the	ExpressRoute	circuit.	

Activities:		

• ConLigure	the	on-premises	router	for	BGP	routing	with	Azure.	

• Set	up	VPN	fallback	for	ExpressRoute	for	additional	resilience.	

Task	4:	Integrating	Azure	Services	

Objective:		Connect	Azure	services	to	the	ExpressRoute	circuit	for	seamless	hybrid	operations.	

Activities:		

• Link	Virtual	Networks	to	the	ExpressRoute	circuit	for	direct	access	from	on-premises.	

• ConLigure	Azure	services	such	as	Azure	VMs,	Storage	Accounts,	and	SQL	Databases	to	utilize	the	
ExpressRoute	connection.	

Task	5:	Monitoring	and	Troubleshooting	

Objective:		Implement	monitoring	for	the	ExpressRoute	connection	and	troubleshoot	any	connectivity	
issues.	

Activities:		

• Use	Azure	Network	Watcher	and	ExpressRoute	monitoring	features	to	monitor	the	health	and	
performance	of	the	connection.	

• Troubleshoot	common	connectivity	issues,	ensuring	stable	and	reliable	hybrid	network	
performance.	

Deliverables:	

- Detailed	architecture	diagrams	and	deployment	plans.	

- ConLiguration	Liles,	scripts,	and	commands	used	throughout	the	project	tasks.	

- A	monitoring	and	alerting	setup	with	customized	dashboards	and	alert.	

Th
eO
psK
art



	

Project:	Implementing	a	Highly	Available	Database	with	Azure	SQL	
Project	Overview	:	

This	project	aims	to	set	up	a	highly	available	database	solution	using	Azure	SQL	Database.	Students	
will	learn	how	to	conLigure	a	high-availability	architecture	by	leveraging	geo-replication	and	failover	
groups	in	Azure	SQL,	ensuring	database	resilience	and	minimizing	downtime	during	planned	or	
unplanned	outages.	

Objective:	

Design	and	implement	a	highly	available	database	system	using	Azure	SQL	Database	features	like	geo-
replication	and	failover	groups	to	ensure	data	availability	and	business	continuity.	

Task	1:		Azure	SQL	Database	Setup	

Objective:	Provision	and	conLigure	an	Azure	SQL	Database	for	high	availability.	

Activities:	

• Create	an	Azure	SQL	Database,	selecting	the	appropriate	service	tier	and	performance	level	to	meet	
the	application's	requirements.	

• ConLigure	SQL	Database	settings,	including	data	retention,	security,	and	performance	tuning	options.	

Task	2:	Implementing	Geo-Replication	

Objective:	Set	up	active	geo-replication	for	the	Azure	SQL	Database	to	replicate	data	across	Azure	
regions.	

Activities:	

• Select	additional	Azure	regions	for	data	replication,	considering	factors	like	proximity	to	users	and	
regional	compliance	requirements.	

• ConLigure	active	geo-replication	in	the	Azure	portal,	establishing	up	to	four	readable	secondary	
databases	in	different	regions.	

• Test	the	replication	setup	by	performing	read	and	write	operations	on	the	primary	database	and	
validating	the	synchronization	with	secondary	databases.	

Task	3:	ConLiguring	Failover	Groups	

Objective:		Create	and	manage	failover	groups	to	automate	the	failover	process	between	the	primary	
and	secondary	databases.	

Activities:		

• DeLine	a	failover	group	that	includes	the	primary	database	and	its	geo-replicated	secondaries.	

• ConLigure	automatic	failover	policies	based	on	predeLined	rules	or	metrics,	such	as	database	
availability	or	performance	thresholds.	

• Test	the	failover	mechanism	by	simulating	scenarios	like	region	outages	or	database	corruption,	
ensuring	the	automatic	failover	and	failback	processes	work	as	expected.	

Th
eO
psK
art



Task	4:	Monitoring	and	Maintenance	

Objective:		Set	up	monitoring	for	the	high-availability	architecture	and	perform	regular	maintenance	
tasks.	

Activities:		

• Implement	Azure	Monitor	and	Azure	SQL	Analytics	to	track	the	health,	performance,	and	availability	
of	the	databases.	

• Schedule	regular	reviews	of	the	failover	group	conLiguration	and	geo-replication	health	to	ensure	the	
high-availability	setup	remains	optimal.	

• Document	maintenance	procedures,	including	performance	tuning,	security	patching,	and	failover	
testing.	

Deliverables:	

• ConLiguration	details	and	setup	instructions	for	the	Azure	SQL	Database,	including	geo-replication	
and	failover	groups.	

• A	testing	report	detailing	the	failover	and	failback	process,	including	any	issues	encountered	and	
their	resolutions.	

• A	monitoring	setup	with	custom	dashboards	and	alerts	for	tracking	database	health	and	
performance.	

• Maintenance	guidelines	for	managing	the	high-availability	database	system.	

===============================================================================		

Project:	Securing	Cloud	Applications	with	Azure	Active	Directory	and	Key	
Vault	
Project	Overview	:	

This	project	focuses	on	securing	cloud	applications	by	integrating	Azure	Active	Directory	(AAD)	for	
authentication	and	Azure	Key	Vault	for	managing	secrets	and	encryption	keys.	Students	will	implement	
authentication,	authorization,	and	secure	storage	mechanisms	to	protect	sensitive	information	and	
ensure	secure	access	to	cloud	applications.	

Objective:	

Enhance	the	security	of	cloud	applications	using	Azure	Active	Directory	for	user	authentication	and	
Azure	Key	Vault	for	secrets	and	encryption	keys	management,	demonstrating	best	practices	in	cloud	
application	security.	

Task	1:		Integrating	Azure	Active	Directory	

Objective:	Implement	Azure	AD	authentication	for	a	cloud	application,	enabling	secure	user	sign-in	and	
access	control.	

Activities:	

• Register	the	application	in	Azure	AD	to	obtain	an	Application	(client)	ID	and	conLigure	authentication	
settings.	

• Implement	OAuth	2.0	or	OpenID	Connect	in	the	application	to	support	Azure	AD	sign-in.	

Th
eO
psK
art



• ConLigure	user	roles	and	permissions	in	Azure	AD	for	Line-grained	access	control	within	the	
application.	

Task	2:	Managing	Secrets	with	Azure	Key	Vault	

Objective:	Utilize	Azure	Key	Vault	for	storing	application	secrets	and	encryption	keys	securely.	

Activities:	

• Create	an	Azure	Key	Vault	and	conLigure	access	policies	to	restrict	access	to	authorized	Azure	AD	
identities	only.	

• Store	application	secrets	(e.g.,	connection	strings,	API	keys)	and	encryption	keys	in	the	Key	Vault.	

• Modify	the	application	to	retrieve	secrets	and	keys	from	Key	Vault	programmatically,	ensuring	
sensitive	information	is	not	hard-coded	in	the	application	code.	

Task	3:	Implementing	Encryption	and	Data	Protection	

Objective:		Apply	encryption	to	protect	data	in	transit	and	at	rest,	using	Azure	Key	Vault	for	key	
management.	

Activities:		

• Implement	SSL/TLS	for	the	application	to	secure	data	in	transit.	

• Use	Azure	Key	Vault	keys	to	encrypt	sensitive	data	at	rest,	such	as	database	Liles	or	blob	storage.	

• ConLigure	and	enforce	HTTPS-only	communication	with	Azure	services.	

Task	4:	Monitoring	and	Compliance	

Objective:		Set	up	monitoring	for	security-related	events	and	ensure	compliance	with	security	
standards.	

Activities:		

• Utilize	Azure	Monitor	and	Azure	Security	Center	to	track	security	events	and	potential	
vulnerabilities.	

• Set	up	alerts	for	unauthorized	access	attempts,	secret	access,	or	conLiguration	changes	in	Azure	Key	
Vault.	

• Review	and	document	the	application’s	compliance	with	relevant	security	standards	and	regulations.	

Deliverables:	

- A	detailed	implementation	guide	for	integrating	Azure	Active	Directory	and	Azure	Key	Vault	with	a	
cloud	application.	

- Source	code	snippets	or	templates	demonstrating	the	authentication	Llow	and	secure	secrets	
retrieval.	

- A	security	assessment	report	outlining	encryption	implementations,	access	controls,	and	
compliance	checks.	

- Monitoring	and	alerting	conLiguration	details	for	tracking	security	events	and	ensuring	the	
application’s	security	posture.	

Th
eO
psK
art



Project:	Implementing	an	Application	with	Azure	AD	Authentication	and	
Key	Vault	for	Secrets	Management	
Project	Overview	:	

This	project	involves	developing	a	cloud-based	application	that	leverages	Azure	Active	Directory	
(Azure	AD)	for	secure	user	authentication	and	Azure	Key	Vault	for	managing	application	secrets.	The	
goal	is	to	demonstrate	how	to	enhance	application	security	by	integrating	Azure's	identity	
management	services	and	secrets	management	capabilities.	

Objective:	

Develop	a	secure	application	architecture	that	uses	Azure	AD	for	authentication	and	Azure	Key	Vault	to	
store	and	access	sensitive	conLiguration	information	like	database	connection	strings	or	API	keys.	

Task	1:		Setting	Up	Azure	AD	for	Application	Authentication	

Objective:	ConLigure	Azure	AD	to	manage	user	identities	and	authentication	for	the	application.	

Activities:	

• Create	a	new	application	registration	in	Azure	AD	to	represent	the	application	within	the	directory.	

• ConLigure	authentication	settings,	redirect	URIs,	and	permissions	required	by	the	application.	

• Implement	OAuth	2.0	authentication	Llow	in	the	application	code	to	enable	users	to	sign	in	using	
their	Azure	AD	credentials.	

Task	2:	Securing	Application	Secrets	with	Azure	Key	Vault	

Objective:	Utilize	Azure	Key	Vault	for	storing	and	accessing	application	secrets	securely.	

Activities:	

• Provision	a	new	Key	Vault	instance	and	conLigure	access	policies	to	allow	the	application	to	retrieve	
secrets.	

• Store	application	secrets	such	as	database	connection	strings,	API	keys,	and	certiLicates	in	Key	Vault.	

• Modify	the	application	to	retrieve	these	secrets	from	Key	Vault	at	runtime	rather	than	storing	them	
in	conLiguration	Liles	or	source	code.	

Task	3:	Integrating	Azure	AD	and	Key	Vault	with	the	Application	

Objective:		Ensure	the	application	securely	authenticates	users	with	Azure	AD	and	accesses	secrets	
stored	in	Key	Vault	without	exposing	sensitive	information.	

Activities:		

• Use	Azure	SDKs	or	REST	APIs	to	integrate	Azure	AD	authentication	into	the	application's	sign-in	
process.	

• Implement	code	to	authenticate	with	Azure	Key	Vault	and	securely	retrieve	secrets	as	needed	during	
application	runtime.	

• Test	the	application	to	ensure	that	authentication	Llows	work	as	expected	and	that	secrets	are	
accessed	securely	from	Key	Vault.	

Th
eO
psK
art



Task	4:	Documentation	and	Best	Practices	

Objective:		Document	the	setup	process	and	highlight	best	practices	for	implementing	security	with	
Azure	AD	and	Key	Vault.	

Activities:		

• Create	a	detailed	guide	on	setting	up	Azure	AD	authentication	and	Key	Vault	integration	for	
applications.	

• Document	the	steps	taken	to	secure	application	secrets	and	manage	user	authentication.	

• Outline	best	practices	for	managing	identities	and	secrets	in	Azure	to	maintain	a	high	security	
posture.	

Deliverables:	

- Application	code	integrating	Azure	AD	for	user	authentication	and	Azure	Key	Vault	for	secrets	
management.	

- ARM	template	or	Azure	CLI	scripts	used	for	provisioning	Azure	resources.	

- Comprehensive	documentation	covering	the	setup	of	Azure	AD	and	Key	Vault,	application	
integration	steps,	and	security	best	practices.	

===============================================================================	

Project:	Automating	Infrastructure	Deployment	with	ARM	Templates	
Project	Overview	:	

This	project	focuses	on	using	Azure	Resource	Manager	(ARM)	templates	to	automate	the	deployment	
of	a	fully	conLigured	cloud	environment	in	Azure.	Students	will	gain	hands-on	experience	in	writing,	
deploying,	and	managing	infrastructure	as	code,	streamlining	the	provisioning	process	for	complex	
environments.	

Objective:	

Master	the	creation	and	deployment	of	ARM	templates	to	automate	the	setup	of	Azure	resources,	
ensuring	consistent	and	repeatable	deployments	across	development,	testing,	and	production	
environments.	

Task	1:		Plan	the	cloud	infrastructure	architecture	that	will	be	deployed	using	ARM	templates.	

Objective:	ConLigure	Amazon	EKS	to	host	the	microservices	application,	ensuring	it	is	secure,	scalable,	
and	highly	available.	

Activities:	

• Identify	the	Azure	resources	required	for	the	project	(e.g.,	virtual	networks,	VMs,	storage	accounts,	
web	apps).	

• DeLine	the	resource	relationships	and	dependencies	to	ensure	proper	deployment	order.	

• Sketch	an	architecture	diagram	to	visualize	the	deployment.	

Th
eO
psK
art



Task	2:	Writing	ARM	Templates	

Objective:	Write	ARM	templates	to	deLine	the	infrastructure	as	code.	

Activities:	

• Create	ARM	templates	for	each	set	of	resources,	utilizing	parameters,	variables,	and	resources	blocks	
to	deLine	the	infrastructure.	

• Use	linked	templates	for	complex	deployments,	separating	resources	into	modular	templates	for	
better	manageability.	

• Incorporate	best	practices	for	template	development,	including	the	use	of	parameters	for	
environment-speciLic	values.	

Task	3:	Deploying	the	Infrastructure	

Objective:		Deploy	the	infrastructure	to	Azure	using	the	ARM	templates.	

Activities:			

• Use	Azure	CLI,	PowerShell,	or	the	Azure	portal	to	deploy	the	ARM	templates	to	Azure.	

• Validate	the	deployment	in	the	Azure	portal,	ensuring	all	resources	are	correctly	provisioned	and	
conLigured.	

• Test	the	connectivity	and	functionality	of	the	deployed	resources	(e.g.,	accessing	a	deployed	web	
application).	

Task	4:	Managing	and	Updating	Deployments	

Objective:		Update	and	manage	the	infrastructure	using	ARM	templates.	

Activities:		

• Make	changes	to	the	ARM	templates	to	modify	or	add	resources	and	redeploy.	

• Implement	deployment	slots	for	web	applications	to	manage	updates	and	rollbacks.	

• Use	Azure	Resource	Manager	to	track	deployment	history	and	manage	resource	states.	

Deliverables:	

- A	set	of	ARM	templates	that	represent	the	infrastructure	architecture.	

- Scripts	or	commands	used	for	deploying	the	templates.	

- A	detailed	guide	documenting	the	template	creation	process,	deployment	steps,	and	management	
practices.	

- An	architecture	diagram	representing	the	deployed	infrastructure.	

Th
eO
psK
art


	Advanced Azure Services Course for Intermediate Students

