
Advanced DevOps Course for Intermediate Students 

Course Overview: 

This	advanced	DevOps	course	is	tailored	for	professionals	seeking	to	deepen	their	understanding	of	
DevOps	practices	and	tools.	It	covers	a	wide	range	of	topics,	including	infrastructure	as	code	(IaC),	
advanced	CI/CD	pipelines,	container	orchestration,	microservices	architecture,	monitoring	and	
observability,	and	DevOps	security.	The	course	combines	theoretical	knowledge	with	hands-on	labs	
and	real-world	scenarios	to	prepare	students	for	complex	DevOps	challenges.	

Module 1: Infrastructure as Code (IaC) and Configura@on Management 
• Advanced	Terraform	and	CloudFormation	for	cloud	resource	provisioning.	

• ConFiguration	management	with	Ansible,	Chef,	or	Puppet.	

• Best	practices	for	managing	IaC	and	conFiguration	scripts.	

Module 2: Advanced Con@nuous Integra@on and Deployment (CI/CD) 
• Designing	complex	CI/CD	pipelines	with	Jenkins,	GitLab	CI,	or	GitHub	Actions	

• Implementing	blue/green	and	canary	deployments	

• Automation	of	release	processes	and	integration	with	monitoring	tools	

Module 3: Container Orchestra@on with Kubernetes 
• Deep	dive	into	Kubernetes	architecture	and	components	

• Hands-on	labs	on	deploying	and	managing	applications	with	Kubernetes	

• Advanced	Kubernetes	features	like	auto-scaling,	namespace	strategies,	and	Helm	charts	

Module 4: Microservices Architecture 
• Designing	and	deploying	microservices	

• Service	mesh	implementation	with	Istio	or	Linkerd	

• Strategies	for	microservices	communication,	discovery,	and	resilience	

Module 5: Monitoring, Logging, and Observability 
• Advanced	monitoring	with	Prometheus	and	Grafana	

• Centralized	logging	solutions	(ELK	stack	or	Fluentd)	

• Implementing	observability	in	applications	(tracing	with	Jaeger	or	Zipkin)	

Module 6: DevOps Security (DevSecOps) 
• Integrating	security	into	the	CI/CD	pipeline	

• Vulnerability	scanning	with	tools	like	SonarQube,	Clair	

• Secrets	management	best	practices	with	Vault	or	AWS	Secrets	Manager	

Th
eO
psK
art



Module 7: Performance Tuning and Op@miza@on 
• Techniques	for	optimizing	application	and	infrastructure	performance	

• Load	testing	tools	and	practices	

• Cost	optimization	strategies	for	cloud	resources	

Module 8: DevOps Culture and Agile Methodologies 
• Best	practices	for	fostering	a	DevOps	culture	within	an	organization	

• Integrating	DevOps	with	Agile	and	Scrum	methodologies	

• Communication	and	collaboration	tools	for	DevOps	teams	

Hands-on Projects

Project	1:	Multi-Stage	CI/CD	Pipeline	Creation	
Project	Overview:		

This	project	aims	to	provide	hands-on	experience	in	designing	and	implementing	a	comprehensive,	
multi-stage	CI/CD	pipeline	for	a	web	application.	The	pipeline	will	encompass	stages	for	building	the	
application,	running	automated	tests,	deploying	to	different	environments,	and	monitoring	the	
application	post-deployment.	By	the	end	of	this	project,	students	will	have	a	deeper	understanding	of	
how	CI/CD	pipelines	facilitate	continuous	integration,	continuous	delivery,	and	reliability	in	software	
development	processes.	

Objective:	

To	create	a	robust	CI/CD	pipeline	that	automates	the	process	of	building,	testing,	deploying,	and	
monitoring	a	web	application,	demonstrating	best	practices	in	DevOps	workFlows.	

Task	1:	Pipeline	Design	and	Tool	Selection	

Objective:	Design	the	structure	of	the	CI/CD	pipeline	and	select	the	appropriate	tools.	

Activities:	

• Outline	the	stages	required	for	the	CI/CD	pipeline:	code	integration,	testing	(unit	tests,	integration	
tests),	deployment	(staging,	production),	and	monitoring.	

• Choose	tools	and	platforms	for	implementing	the	pipeline,	such	as	Jenkins,	GitLab	CI/CD,	GitHub	
Actions,	or	Azure	DevOps,	based	on	the	project	requirements	and	existing	infrastructure.	

• Plan	for	artifact	storage,	environment	conFigurations,	and	deployment	strategies.	

Task	2:	Building	and	Integration	

Objective:	Automate	the	code	integration	and	build	process.	

Activities:	

• ConFigure	the	source	control	repository	to	trigger	the	pipeline	on	code	commits	or	pull	requests.	

Th
eO
psK
art



• Set	up	the	build	stage	to	compile	the	web	application	and	package	it	into	a	deployable	artifact,	using	
tools	like	Maven,	Gradle,	or	npm.	

• Implement	artifact	versioning	and	store	the	build	artifacts	in	a	repository	or	artifact	storage	solution.	

Task	3:	Automated	Testing	

Objective:		Integrate	automated	testing	into	the	pipeline.	

Activities:		

• Incorporate	unit	testing	and	integration	testing	using	frameworks	appropriate	for	the	application's	
technology	stack.	

• ConFigure	the	pipeline	to	fail	if	tests	do	not	pass,	ensuring	that	only	quality	code	progresses	to	the	
deployment	stages.	

• Optional:	Integrate	code	quality	and	security	scanning	tools	to	analyze	the	codebase	for	
vulnerabilities	and	issues.	

Task	4:	Deployment	Automation	

Objective:		Automate	the	deployment	of	the	application	to	multiple	environments.	

Activities:		

• Set	up	deployment	stages	for	staging	and	production	environments,	ensuring	conFigurations	are	
environment-speciFic.	

• Use	infrastructure	as	code	(IaC)	tools	like	Terraform	or	Ansible	to	provision	and	conFigure	the	
necessary	infrastructure	automatically.	

• Implement	blue/green	or	canary	deployment	strategies	to	minimize	downtime	and	reduce	
deployment	risk.	

Task	5:	Monitoring	and	Feedback	Loop	

Objective:		Implement	monitoring	solutions	and	establish	a	feedback	loop	for	continuous	
improvement.	

Activities:		

• Integrate	monitoring	tools	such	as	Prometheus,	Grafana,	or	cloud	provider-native	tools	to	monitor	
the	application's	health	and	performance	in	production.	

• ConFigure	alerts	for	any	critical	issues	detected	post-deployment,	ensuring	that	the	development	
team	can	respond	quickly.	

• Establish	a	feedback	loop	where	insights	from	monitoring	and	post-deployment	testing	inform	
future	development	efforts.	

Deliverables:	

- A	fully	functional	multi-stage	CI/CD	pipeline,	documented	with	setup	instructions	and	
conFigurations.	

- The	web	application	source	code,	along	with	build	and	deployment	scripts.	

Th
eO
psK
art



- Documentation	on	the	automated	testing	setup,	including	test	frameworks	used	and	testing	
strategies	implemented.	

- A	monitoring	setup	with	dashboards	for	tracking	application	performance	and	health,	alongside	
documentation	on	responding	to	alerts.	

- A	project	report	detailing	the	pipeline	design	decisions,	tool	selection	rationale,	challenges	
encountered,	and	lessons	learned	throughout	the	project.	

===============================================================================	

Project	2:	Infrastructure	Provisioning	with	Terraform	
Project	Overview	:	

This	project	focuses	on	utilizing	Terraform,	an	open-source	Infrastructure	as	Code	(IaC)	tool,	to	
automate	the	provisioning	of	a	complete	production	environment	on	a	cloud	platform.	Students	will	
learn	how	to	deFine	infrastructure	as	code,	manage	Terraform	state,	and	apply	best	practices	for	
scalable	and	maintainable	infrastructure	provisioning.	This	hands-on	project	aims	to	simulate	a	real-
world	scenario	where	Terraform	is	used	to	deploy	a	multi-tier	application	infrastructure	in	a	cloud	
environment.	

Objective:	

To	automate	the	provisioning	of	a	scalable,	secure,	and	highly	available	production	environment	using	
Terraform,	demonstrating	proFiciency	in	Terraform	syntax,	state	management,	and	modular	
infrastructure	design.	

Task	1:	Designing	the	Production	Environment	

Objective:	Plan	and	design	the	architecture	for	the	production	environment	to	be	provisioned	with	
Terraform.	

Activities:	

• Identify	the	components	needed	for	a	production-grade	environment,	including	compute	instances,	
networking	resources	(VPC,	subnets),	load	balancers,	databases,	and	any	cloud-native	services	
required	by	the	application.	

• DeFine	the	requirements	for	high	availability,	scalability,	and	security.	

• Sketch	an	architecture	diagram	outlining	the	planned	infrastructure	setup.	

Task	2:	Terraform	Project	Setup	

Objective:	Initialize	a	Terraform	project	and	organize	resources	using	modules	for	reusability	and	
maintainability.	

Activities:	

• Install	Terraform	and	set	up	a	version-controlled	Terraform	project.	

• Organize	the	infrastructure	setup	into	logical	modules	(e.g.,	networking,	compute,	database)	to	
encapsulate	different	parts	of	the	cloud	environment.	

• Write	a	terraform.tfvars	File	to	deFine	environment-speciFic	variables.	

Th
eO
psK
art



Task	3:	Writing	Terraform	ConFiguration	

Objective:		Write	Terraform	conFiguration	Files	to	deFine	the	required	infrastructure	resources	in	code.	

Activities:		

• DeFine	resource	conFigurations	for	the	cloud	environment	using	Terraform	syntax,	referring	to	the	
cloud	provider's	Terraform	provider	documentation.	

• Utilize	Terraform	data	sources	to	fetch	information	about	existing	resources	that	need	to	be	
referenced	(e.g.,	AMIs,	VPC	IDs).	

• Implement	security	best	practices,	such	as	conFiguring	security	groups/Firewalls	and	IAM	roles/
policies.	

Task	4:	Managing	Terraform	State	

Objective:		ConFigure	Terraform	state	management	to	support	team	collaboration	and	state	locking.	

Activities:		

• Set	up	a	remote	backend	for	Terraform	state,	such	as	an	S3	bucket	with	state	locking	via	DynamoDB	
(for	AWS)	or	the	equivalent	in	other	cloud	providers.	

• ConFigure	state	access	controls	and	encryption	to	secure	sensitive	information.	

• Discuss	strategies	for	managing	state	in	a	team	environment,	including	state	locking	and	avoiding	
conFlicts.	

Task	5:	Deploying	and	Testing	the	Environment	

Objective:		Deploy	the	infrastructure	to	the	cloud	provider	and	validate	the	setup.	

Activities:		

• Run	terraform	plan	to	review	the	planned	infrastructure	changes	and	ensure	correctness.	

• Execute	terraform	apply	to	provision	the	resources	in	the	cloud	environment.	

• Perform	post-deployment	tests	to	verify	that	the	environment	meets	the	application's	operational	
and	accessibility	requirements.	

Task	6:	Documentation	and	Cleanup	

Objective:		Document	the	Terraform	project	setup	and	provide	instructions	for	deploying	and	
managing	the	infrastructure.	

Activities:		

• Document	the	Terraform	project	structure,	modules	used,	and	instructions	for	provisioning	the	
environment.	

• Include	guidelines	for	scaling,	updating,	and	decommissioning	infrastructure	using	Terraform.	

Th
eO
psK
art



• Outline	a	procedure	for	safely	destroying	Terraform-managed	resources	to	clean	up	the	
environment.	

Deliverables:	

- Terraform	conFiguration	Files	for	provisioning	a	complete	production	environment,	organized	into	
modules.	

- A	remote	backend	conFiguration	for	Terraform	state	management,	with	setup	instructions.	

- Documentation	covering	the	architecture	design,	project	setup,	deployment	instructions,	and	best	
practices	for	infrastructure	management	with	Terraform.	

- A	test	plan	and	report	detailing	the	validation	of	the	deployed	environment.	

===============================================================================	

Project	3:	Kubernetes	Cluster	Deployment	and	Application	Scaling	

Project	Overview	:	

This	project	focuses	on	deploying	an	application	on	a	Kubernetes	cluster	and	implementing	auto-
scaling	features	to	handle	varying	trafFic	loads	efFiciently.	Students	will	learn	to	deploy	a	Kubernetes	
cluster,	conFigure	the	application	for	Kubernetes,	and	use	Horizontal	Pod	Autoscaler	(HPA)	and	Cluster	
Autoscaler	to	dynamically	adjust	resources	to	meet	demand.	

Objective:	

Deploy	a	containerized	application	to	a	Kubernetes	cluster	and	conFigure	auto-scaling	to	ensure	the	
application	can	handle	trafFic	spikes	without	manual	intervention.	

Task	1:	Kubernetes	Cluster	Setup	

Objective:	Provision	a	Kubernetes	cluster	suitable	for	hosting	a	scalable	application.	

Activities:	

• Choose	a	Kubernetes	service	(e.g.,	Amazon	EKS,	Google	GKE,	Azure	AKS)	for	deploying	the	cluster.	

• Use	Terraform	or	the	cloud	provider's	CLI	to	provision	a	Kubernetes	cluster	with	an	appropriate	size	
and	conFiguration	for	the	application.	

• ConFigure	kubectl	to	connect	to	the	newly	created	cluster.	

Task	2:	Application	Containerization	and	Deployment	

Objective:	Prepare	the	application	for	deployment	to	Kubernetes.	

Th
eO
psK
art



Activities:	

• Containerize	the	application	by	creating	a	DockerFile,	building	a	Docker	image,	and	pushing	it	to	a	
container	registry	(e.g.,	Docker	Hub,	Amazon	ECR,	Google	Container	Registry).	

• Write	Kubernetes	deployment	and	service	manifests	for	the	application,	deFining	the	desired	state,	
replicas,	and	exposing	the	application	via	a	LoadBalancer	or	Ingress	controller.	

• Deploy	the	application	to	the	Kubernetes	cluster	using	kubectl	or	Helm	charts.	

Task	3:	Implementing	Horizontal	Pod	Autoscaler	(HPA)	

Objective:		ConFigure	HPA	to	automatically	scale	the	number	of	application	pods	based	on	CPU	
utilization	or	custom	metrics.	

Activities:		

• Install	and	conFigure	the	Metrics	Server	in	the	Kubernetes	cluster	to	enable	resource	metric	
collection.	

• Create	an	HPA	resource	targeting	the	application	deployment,	specifying	the	metric	thresholds	that	
trigger	scaling	actions.	

• Test	the	HPA	functionality	by	simulating	increased	trafFic	and	observing	the	scaling	behavior.	

Task	4:		ConFiguring	Cluster	Autoscaler	

Objective:		Set	up	the	Cluster	Autoscaler	to	automatically	adjust	the	size	of	the	cluster	based	on	the	
demands	of	the	application	and	resource	utilization.	

Activities:		

• Enable	Cluster	Autoscaler	on	the	Kubernetes	cluster,	conFiguring	it	according	to	the	cloud	provider's	
guidelines.	

• Specify	minimum	and	maximum	node	counts,	and	deFine	policies	for	scaling	up	and	down.	

• Simulate	conditions	that	require	scaling	out	(increased	load)	and	scaling	in	(reduced	load)	to	
validate	the	Cluster	Autoscaler's	response.	

Task	5:	Monitoring	and	Optimization	

Objective:		Implement	monitoring	solutions	to	track	the	application's	performance	and	optimize	
resource	usage.	

Activities:		

• Set	up	a	monitoring	solution	using	tools	like	Prometheus	and	Grafana,	integrating	with	Kubernetes	to	
monitor	pod	metrics,	node	health,	and	application	performance.	

• Create	dashboards	to	visualize	key	performance	indicators	(KPIs)	and	set	up	alerts	for	critical	
metrics,	such	as	high	CPU/memory	usage,	error	rates,	and	response	times.	

Th
eO
psK
art



• Analyze	the	monitoring	data	to	identify	bottlenecks	or	inefFiciencies	and	make	adjustments	to	the	
deployment	or	autoscaling	conFigurations	as	necessary.	

Deliverables:	

- Terraform	conFigurations	or	CLI	commands	used	for	provisioning	the	Kubernetes	cluster.	

- DockerFile	for	containerizing	the	application,	along	with	deployment	and	service	Kubernetes	
manifests.	

- ConFigurations	for	HPA	and	Cluster	Autoscaler,	including	any	custom	metric	deFinitions.	

- Monitoring	dashboards	and	alert	conFigurations.	

- A	comprehensive	report	documenting	the	deployment	process,	autoscaling	conFiguration,	
monitoring	setup,	tests	conducted,	observations	made,	and	any	optimizations	applied	to	improve	
performance	or	efFiciency.	

===============================================================================	

Project	4:	Microservices	Deployment	with	Service	Mesh	

Project	Overview	:	

This	project	focuses	on	deploying	a	microservices-based	application	on	a	Kubernetes	cluster	and	
integrating	a	service	mesh	solution,	such	as	Istio	or	Linkerd,	to	enhance	service-to-service	
communication,	security,	and	observability.	Students	will	gain	practical	experience	in	managing	
complex	microservices	architectures	and	understanding	the	beneFits	of	using	a	service	mesh	in	a	
distributed	system.	

Objective:	

Deploy	a	microservices	architecture	application	on	Kubernetes	and	utilize	a	service	mesh	for	advanced	
trafFic	management,	security,	and	observability	features.	

Task	1:	Preparing	the	Microservices	Application	

Objective:	Prepare	a	microservices-based	application	for	deployment.	

Activities:	

• Choose	a	sample	or	create	a	simple	microservices-based	application	with	at	least	3-4	services	(e.g.,	
front-end	UI,	back-end	API,	database	service,	authentication	service).	

• Containerize	each	component	of	the	application,	creating	DockerFiles	and	building	Docker	images.	

• Push	the	Docker	images	to	a	container	registry	(Docker	Hub,	ECR,	GCR,	ACR).	

Task	2:	Kubernetes	Cluster	Setup	and	Application	Deployment	

Objective:	Deploy	the	microservices	application	on	a	Kubernetes	cluster.	

Th
eO
psK
art



Activities:	

• Provision	a	Kubernetes	cluster	using	a	cloud	provider's	managed	Kubernetes	service	(e.g.,	EKS,	AKS,	
GKE)	or	minikube	for	local	development.	

• Create	Kubernetes	deployment	and	service	manifests	for	each	microservice.	

• Deploy	the	application	to	the	Kubernetes	cluster,	ensuring	each	microservice	is	correctly	conFigured	
and	accessible.	

Task	3:	Integrating	a	Service	Mesh	

Objective:		Integrate	a	service	mesh	solution	to	manage	communication	between	microservices.	

Activities:		

• Choose	a	service	mesh	implementation	(e.g.,	Istio,	Linkerd)	based	on	the	project	requirements.	

• Install	and	conFigure	the	service	mesh	in	the	Kubernetes	cluster,	following	the	ofFicial	
documentation.	

• Inject	the	service	mesh's	sidecar	proxies	into	the	microservices	deployments	to	enable	service-to-
service	communication	through	the	mesh.	

Task	4:		Implementing	Advanced	TrafFic	Management	

Objective:		Leverage	the	service	mesh	for	advanced	trafFic	management	capabilities.	

Activities:		

• ConFigure	trafFic	routing	rules	to	manage	load	balancing,	canary	releases,	and	A/B	testing	between	
microservice	versions.	

• Implement	resilience	patterns	like	retries,	circuit	breakers,	and	timeouts	to	improve	the	application's	
reliability.	

• Use	the	service	mesh	to	enforce	mutual	TLS	(mTLS)	for	secure	service-to-service	communication.	

Task	5:	Observability	and	Monitoring	

Objective:		Utilize	the	service	mesh's	observability	features	to	monitor	the	microservices	application.	

Activities:		

• ConFigure	the	service	mesh	to	collect	telemetry	data	(metrics,	logs,	traces)	for	the	microservices.	

• Set	up	dashboards	using	the	service	mesh's	observability	tools	or	integrate	with	external	monitoring	
solutions	(e.g.,	Prometheus,	Grafana)	to	visualize	the	telemetry	data.	

• Analyze	the	collected	data	to	understand	the	application's	performance,	identify	bottlenecks,	and	
troubleshoot	issues.	

Th
eO
psK
art



Deliverables:	

- DockerFiles	and	Kubernetes	manifests	for	the	microservices	application.	

- Documentation	on	the	setup	and	conFiguration	of	the	Kubernetes	cluster	and	service	mesh.	

- ConFigurations	for	trafFic	management,	security	policies,	and	resilience	patterns	implemented	in	the	
service	mesh.	

- Observability	setup,	including	dashboards	and	alerts	conFigured	for	monitoring	the	application.	

- A	report	detailing	the	deployment	process,	challenges	encountered,	beneFits	of	using	a	service	mesh,	
and	insights	gained	from	the	observability	data.		

- =============================================================================	

Project	5:	Implementing	Observability	in	Cloud-Deployed	Applications	

Project	Overview	:	

This	project	aims	to	teach	students	how	to	implement	observability	in	a	cloud-deployed	application.	
Observability	is	a	crucial	aspect	of	modern	cloud-native	applications,	allowing	developers	and	
operators	to	understand	the	system's	internal	state	based	on	external	outputs.	Through	this	project,	
students	will	integrate	comprehensive	logging,	monitoring,	and	tracing	capabilities	into	an	application,	
using	popular	tools	and	services	provided	by	cloud	platforms.	

Objective:	

Enhance	a	cloud-deployed	application	with	robust	observability	features,	including	structured	logging,	
performance	monitoring,	and	distributed	tracing,	to	enable	real-time	insights	into	application	behavior	
and	performance.	

Task	1:	Application	and	Environment	Setup	

Objective:	Prepare	the	application	and	the	cloud	environment	for	observability	integration.	

Activities:	

• Select	a	multi-component	application	deployed	on	a	cloud	platform	(AWS,	Azure,	GCP,	or	others).	The	
application	should	have	at	least	a	frontend,	backend,	and	database	component	to	demonstrate	
distributed	tracing	effectively.	

• Ensure	the	application	is	instrumented	for	logging	with	a	focus	on	structured	logging,	which	can	be	
parsed	and	queried	more	efFiciently.	

Task	2:	Integrating	Cloud	Logging	

Objective:	Implement	a	centralized	logging	solution	using	the	cloud	provider's	logging	service	(e.g.,	
Amazon	CloudWatch	Logs,	Azure	Monitor	Logs,	Google	Cloud	Logging).	

Th
eO
psK
art



Activities:	

• ConFigure	the	application	to	send	logs	to	the	cloud	provider's	logging	service,	ensuring	that	logs	from	
all	components	are	centralized.	

• DeFine	log	retention	policies	and	create	log-based	metrics	for	monitoring	critical	events	or	errors	
within	the	application.	

Task	3:	Setting	Up	Cloud	Monitoring	

Objective:		Utilize	the	cloud	provider's	monitoring	service	(e.g.,	Amazon	CloudWatch,	Azure	Monitor,	
Google	Cloud	Monitoring)	to	track	application	performance	and	system	health.	

Activities:		

• Set	up	dashboards	to	visualize	key	performance	metrics	such	as	request	latency,	error	rates,	and	
resource	utilization.	

• ConFigure	alerts	based	on	thresholds	for	these	metrics	to	proactively	identify	and	address	issues	
before	they	impact	users.	

Task	4:		Implementing	Distributed	Tracing	

Objective:		Integrate	distributed	tracing	into	the	application	to	visualize	and	diagnose	performance	
bottlenecks	across	microservices.	

Activities:		

• Choose	a	distributed	tracing	system	compatible	with	the	cloud	platform	(e.g.,	AWS	X-Ray,	Azure	
Application	Insights,	Google	Cloud	Trace,	Jaeger,	Zipkin).	

• Instrument	the	application	to	generate	trace	data	for	incoming	requests,	ensuring	that	traces	span	
across	the	frontend,	backend,	and	any	external	service	calls.	

• Review	trace	data	and	span	details	to	understand	the	Flow	of	requests	and	identify	latency	issues.	

Task	5:	Monitoring	and	Documentation	

Objective:		Document	the	observability	setup	and	share	best	practices	for	maintaining	and	extending	
observability	in	cloud-deployed	applications.	

Activities:		

• Create	documentation	covering	the	setup	process	for	logging,	monitoring,	and	tracing,	including	
conFigurations	and	any	code	changes	made	to	the	application.	

• Compile	a	list	of	observability	best	practices,	focusing	on	log	management,	performance	monitoring,	
alerting	strategies,	and	effective	use	of	distributed	tracing.	

• Develop	guidelines	for	responding	to	alerts	and	analyzing	trace	data	to	diagnose	and	resolve	
application	issues.	

Th
eO
psK
art



Deliverables:	

- ConFiguration	Files	and	code	snippets	used	for	integrating	logging,	monitoring,	and	tracing	into	the	
application.	

- Dashboards	and	alert	conFigurations	created	for	monitoring	application	performance	and	health.	

- Comprehensive	documentation	outlining	the	observability	integration	process,	including	setup	
instructions,	best	practices,	and	maintenance	guidelines.	

- A	report	or	presentation	summarizing	the	observability	features	implemented,	insights	gained	from	
monitoring	and	tracing	data,	and	recommendations	for	improving	application	performance	and	
reliability	based	on	observability	Findings.

Th
eO
psK
art


	Advanced DevOps Course for Intermediate Students

